Your search found 4 records
1 Smith, J.; Nayak, D.; Datta, A.; Narkhede, W. N.; Albanito, F.; Balana, Bedru; Bandyopadhyay, S. K.; Black, H.; Boke, S.; Brand, A.; Byg, A.; Dinato, M.; Habte, M.; Hallett, P. D.; Lemma, T.; Mekuria, Wolde; Moges, A.; Muluneh, A.; Novo, P.; Rivington, M.; Tefera, T.; Vanni, E. M.; Yakob, G.; Phimister, E. 2020. A systems model describing the impact of organic resource use on farming households in low to middle income countries. Agricultural Systems, 184:102895. [doi: https://doi.org/10.1016/j.agsy.2020.102895]
(Location: IWMI HQ Call no: e-copy only Record No: H049939)
(9.00 MB)
We present a new systems model that encompasses both environmental and socioeconomic outcomes to simulate impacts of organic resource use on livelihoods of smallholder farmers in low to middle income countries. It includes impacts on soils, which in many countries are degrading with long term loss of organic matter. Many farmers have easy access to animal manures that could be used to increase soil organic matter, but this precious resource is often diverted to other purposes, such as fuels, also resulting in loss of the nutrients needed for crop production. This model simulates impacts of different management options on soil organic matter turnover, availability of water and nutrients, crop and animal production, water and energy use, labour requirements and household income and expenditure. An evaluation and example application from India are presented and used to illustrate the importance of considering the whole farm system when developing recommendations to help farmers improve their soils.
(Location: IWMI HQ Call no: e-copy only Record No: H050965)
(7.11 MB) (7.11 MB)
Community-led watershed development activities, including the establishment of exclosures (areas where both livestock and farming activities are excluded) on degraded communal grazing land, have become a common practice in Ethiopia since the 1990s. However, it is not yet fully understood how these exclosures change soil organic carbon and total soil nitrogen in different soil types and under different agroecologies. A meta-analysis using data gathered from the most relevant peer reviewed articles from Ethiopian exclosure systems was conducted to assess the variation in the effects of exclosures on soil carbon and nitrogen and to investigate the factors controlling change. The results demonstrate that after 16 years, exclosures can increase soil organic carbon and total soil nitrogen up to an effect size greater than two. This is moderated by soil type, exclosure age, landscape position and agroecology. More effective restoration of soil carbon was observed in less developed Leptosols and Cambisols than in more developed Luvisols, and in drier than more humid agroecologies. The results suggest that soil type and agroecology should be taken into consideration when planning and implementing exclosures on degraded communal grazing land. The findings of this study provide base line information for the future expansion of exclosures, and guide where to focus implementation. They also provide criteria to be used when planning and establishing exclosures to restore soil carbon and nitrogen. In addition, the results generated through this meta-analysis provide better understanding of the spatial and temporal variation of the effectiveness of exclosures to restore soil carbon and nitrogen.
(Location: IWMI HQ Call no: e-copy only Record No: H052330)
(4.95 MB) (4.95 MB)
Traditional farming systems across much of Sub-Saharan Africa have greater organic inputs near to the homestead than in fields further away. This is likely to produce a fertility gradient that impacts production capacity, and so provides an opportunity to explore impacts of organic amendments on soils. Across 198 farm plots in 69 households in Halaba, Southern Ethiopia, we investigated the influence of different organic input systems on soil properties. The study also examined the influence of household and farm characteristics on the adoption of land management practices and its impact on soil properties. Samples were taken from farm plots located close (300 m) from the homestead, representing different levels of organic amendments. Soils located close to homesteads had significantly greater soil organic carbon, cation exchange capacity and soil nutrient content compared to soil located near and far from the homestead areas. Soil organic carbon concentrations close to the home were 15%, 27% and 45% greater than farm plots located at far from the home in Andegna Choroko, Asore and Lay Arisho kebeles, respectively. Across all sites, the mean soil organic carbon stock ranged from 20.6 t ha- 1 to 84.6 t ha- 1 , depending on the location of the plots with respect to the homestead. Household and farm characteristics also influenced land management practices and soil properties. In some catchments, farm plots managed by female headed households and relatively rich farmers displayed significantly greater soil organic carbon than farm plots managed by male headed and relatively poor households. This was likely due to greater organic inputs in female headed households in areas where men were otherwise engaged in off-farm activities and in wealthier households with greater access to organic manures. Tree cover in farmlands influenced accumulation of soil organic carbon. The results suggest that out-scaling farm management practices that are common around homesteads, such as adding animal manure or household wastes and maintaining tree cover, would help to improve key soil properties and agricultural productivity.
4 Mekuria, Wolde; Phimister, E.; Yakob, G.; Tegegne, Desalegn; Moges, A.; Tesfaye, Y.; Melaku, Dagmawi; Gerber, C.; Hallett, P. D.; Smith, J. U. 2024. Gully rehabilitation in southern Ethiopia – value and impacts for farmers. SOIL, 10(2):637-654. [doi: https://doi.org/10.5194/soil-10-637-2024]
(Location: IWMI HQ Call no: e-copy only Record No: H053130)
(3.63 MB)
Gully erosion can be combatted in severely affected regions like sub-Saharan Africa using various low-cost interventions that are accessible to affected farmers. For successful implementation, however, biophysical evidence of intervention effectiveness needs to be validated against the interests and priorities of local communities. Working with farmers in a watershed in southern Ethiopia, we investigated (a) the effectiveness of low-cost gully rehabilitation measures to reduce soil loss and upward expansion of gully heads; (b) how farmers and communities view gully interventions; and (c) whether involving farmers in on-farm field trials to demonstrate gully interventions improves uptake, knowledge, and perceptions of their capacity to act. On-farm field experiments, key-informant interviews, focus group discussions, and household surveys were used to collect and analyse data. Three gully treatments were explored, all with riprap, one with grass planting, and one with grass planting and check-dam integration. Over a period of 26 months, these low-cost practices ceased measurable gully head expansion, whereas untreated gullies had a mean upward expansion of 671 cm, resulting in a calculated soil loss of 11.0 t. Farmers had a positive view of all gully rehabilitation measures explored. Ongoing rehabilitation activities and on-farm trials influenced the knowledge and understanding of similar gully treatments among survey respondents. On-farm experiments and field day demonstrations empowered farmers to act, addressing pessimism from some respondents about their capacity to do so.
Powered by DB/Text
WebPublisher, from