Your search found 2 records
1 Cuthbert, M. O.; Taylor, R. G.; Favreau, G.; Todd, M. C.; Shamsudduha, M.; Villholth, Karen G.; MacDonald, A. M.; Scanlon, B. R.; Kotchoni, D. O. V.; Vouillamoz, J.-M.; Lawson, F. M. A.; Adjomayi, P. A.; Kashaigili, J.; Seddon, D.; Sorensen, J. P. R.; Ebrahim, Girma Yimer; Owor, M.; Nyenje, P. M.; Nazoumou, Y.; Goni, I.; Ousmane, B. I.; Sibanda, T.; Ascott, M. J.; Macdonald, D. M. J.; Agyekum, W.; Koussoube, Y.; Wanke, H.; Kim, H.; Wada, Y.; Lo, M.-H.; Oki, T.; Kukuric, N. 2019. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 572(7768):230-234. [doi: https://doi.org/10.1038/s41586-019-1441-7]
Groundwater recharge ; Climate change ; Resilience ; Groundwater table ; Observation ; Precipitation ; Hydrology ; Hydrography ; Models ; Arid zones ; Rain / Africa South of Sahara / Benin / Uganda / United Republic of Tanzania / Zimbabwe / South Africa / Namibia / Niger / Ghana / Burkina Faso
(Location: IWMI HQ Call no: e-copy only Record No: H049316)
https://www.nature.com/articles/s41586-019-1441-7.epdf?author_access_token=UgizrPwmrGzlbL33bjbvQdRgN0jAjWel9jnR3ZoTv0M3C122Ih9FQbr0PbeOlDAX9EZlbSwXsaUcJ-Vq-8EelgPfWJQTdVE-2_3g7yypNR4C-qTOMe7Ux1weufjBdaT9SyaKgJjfKYgJ2fqsjIRLng%3D%3D
https://vlibrary.iwmi.org/pdf/H049316.pdf
(7.21 MB)
Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2 , maintains vital ecosystems, and strongly influences terrestrial water and energy budgets3 . Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained4,5 . Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources4 in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies.

2 Sorensen, J. P. R.; Davies, J.; Ebrahim, Girma Y.; Lindle, J.; Marchant, B. P.; Ascott, M. J.; Bloomfield, J. P.; Cuthbert, M. O.; Holland, M.; Jensen, K. H.; Shamsudduha, M.; Villholth, Karen G.; MacDonald, A. M.; Taylor, R. G. 2021. The influence of groundwater abstraction on interpreting climate controls and extreme recharge events from well hydrographs in semi-arid South Africa. Hydrogeology Journal, 29(8):2773-2787. [doi: https://doi.org/10.1007/s10040-021-02391-3]
Groundwater extraction ; Groundwater recharge ; Well hydrographs ; Semiarid climate ; Catchment areas ; Groundwater table ; Rain ; River flow ; Stream flow ; Extreme weather events ; El Nino-Southern Oscillation ; Hydrogeology ; Boreholes ; Spatial distribution ; Land use / South Africa / Limpopo / Mogalakwena Catchment / Sand River Catchment
(Location: IWMI HQ Call no: e-copy only Record No: H050671)
https://link.springer.com/content/pdf/10.1007/s10040-021-02391-3.pdf
https://vlibrary.iwmi.org/pdf/H050671.pdf
(6.26 MB) (6.26 MB)
There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Nino– Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p < 0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO