Your search found 3 records
1 Seddon, D.. 1983. Results of a failure to make an early investigation into tenure in Morocco. London, UK: In ODI irrigation management network paper 83/7b. pp.1-8.
Land tenure / Morocco
(Location: IWMI-HQ Call no: ODI 83\7b Record No: H08958)

2 Kolusu, S. R.; Shamsudduha, M.; Todd, M. C.; Taylor, R. G.; Seddon, D.; Kashaigili, J. J.; Ebrahim, Girma Y.; Cuthbert, M. O.; Sorensen, J. P. R.; Villholth, Karen G.; MacDonald, A. M.; MacLeod, D. A. 2019. The El Nino event of 2015-2016: climate anomalies and their impact on groundwater resources in East and Southern Africa. Hydrology and Earth System Sciences, 23: 1751-1762. [doi: https://doi.org/10.5194/hess-23-1751-2019]
El Nino ; Groundwater management ; Water resources ; Water storage ; Climate change ; Rainfall ; Drought ; Water balance ; Water levels ; Surface water ; Precipitation ; Evapotranspiration ; Satellite imagery ; Satellite observation / East Africa / SouthernAfrica / Limpopo Basin
(Location: IWMI HQ Call no: e-copy only Record No: H049164)
https://www.hydrol-earth-syst-sci.net/23/1751/2019/hess-23-1751-2019.pdf
https://vlibrary.iwmi.org/pdf/H049164.pdf
(2.80 MB)
The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the Equator (EASE), during the major El Niño event of 2015–2016, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and Gravity Recovery and Climate Experiment (GRACE) satellite data. At the continental scale, the El Niño of 2015–2016 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north–south of ~12° S, a characteristic pattern of the El Niño–Southern Oscillation (ENSO). Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the standardised precipitation evapotranspiration index – SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing, and we estimate that anthropogenic warming only (ignoring changes to other climate variables, e.g. precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the Limpopo basin. Conversely, over EASE during the 2015–2016 El Niño event, anomalously wet conditions were observed with an estimated return period of ~10 years, likely moderated by the absence of a strongly positive Indian Ocean zonal mode phase. The strong but not extreme rainy season increased groundwater storage, as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events.

3 Cuthbert, M. O.; Taylor, R. G.; Favreau, G.; Todd, M. C.; Shamsudduha, M.; Villholth, Karen G.; MacDonald, A. M.; Scanlon, B. R.; Kotchoni, D. O. V.; Vouillamoz, J.-M.; Lawson, F. M. A.; Adjomayi, P. A.; Kashaigili, J.; Seddon, D.; Sorensen, J. P. R.; Ebrahim, Girma Yimer; Owor, M.; Nyenje, P. M.; Nazoumou, Y.; Goni, I.; Ousmane, B. I.; Sibanda, T.; Ascott, M. J.; Macdonald, D. M. J.; Agyekum, W.; Koussoube, Y.; Wanke, H.; Kim, H.; Wada, Y.; Lo, M.-H.; Oki, T.; Kukuric, N. 2019. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 572(7768):230-234. [doi: https://doi.org/10.1038/s41586-019-1441-7]
Groundwater recharge ; Climate change ; Resilience ; Groundwater table ; Observation ; Precipitation ; Hydrology ; Hydrography ; Models ; Arid zones ; Rain / Africa South of Sahara / Benin / Uganda / United Republic of Tanzania / Zimbabwe / South Africa / Namibia / Niger / Ghana / Burkina Faso
(Location: IWMI HQ Call no: e-copy only Record No: H049316)
https://www.nature.com/articles/s41586-019-1441-7.epdf?author_access_token=UgizrPwmrGzlbL33bjbvQdRgN0jAjWel9jnR3ZoTv0M3C122Ih9FQbr0PbeOlDAX9EZlbSwXsaUcJ-Vq-8EelgPfWJQTdVE-2_3g7yypNR4C-qTOMe7Ux1weufjBdaT9SyaKgJjfKYgJ2fqsjIRLng%3D%3D
https://vlibrary.iwmi.org/pdf/H049316.pdf
(7.21 MB)
Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2 , maintains vital ecosystems, and strongly influences terrestrial water and energy budgets3 . Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained4,5 . Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources4 in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO