Your search found 3 records
1 Global Water Intelligence (GWI). 2012. Sludge management: opportunities in growing volumes, disposal restrictions and energy recovery. Oxford, UK: Media Analytics Ltd. 296p.
Waste management ; Sludge treatment ; Waste disposal ; Resource recovery ; Energy recovery ; Industrial wastes ; Urban wastes ; Regulations ; Frameworks ; European Union ; Waste water treatment plants ; Technology ; Strategies ; Dewatering ; Anaerobic digestion ; Drying ; Thermal energy ; Pollutants ; Chemical reactions ; Biogas ; Nutrients ; Landfills ; Agricultural sector ; Market access ; Market research ; Market segmentation ; Costs ; Public opinion ; Case studies / North America / Europe / Middle East / North Africa / USA / Canada / China / Brazil / Japan
(Location: IWMI HQ Call no: 628.364 G000 GLO, e-copy SF Record No: H048869)
https://vlibrary.iwmi.org/pdf/H048869_TOC.pdf
(1.08 MB)

2 Vaneeckhaute, C. 2021. Integrating resource recovery process and watershed modelling to facilitate decision-making regarding bio-fertilizer production and application. npj Clean Water, 4:15. [doi: https://doi.org/10.1038/s41545-021-00105-6]
Resource recovery ; Biofertilizers ; Composting ; Watersheds ; Modelling ; Decision making ; Waste management ; Anaerobic digestion
(Location: IWMI HQ Call no: e-copy only Record No: H050692)
https://www.nature.com/articles/s41545-021-00105-6.pdf
https://vlibrary.iwmi.org/pdf/H050692.pdf
(0.65 MB) (664 KB)
Waste management strategies such as anaerobic digestion and composting produce bio-based fertilizer products that could be applied to agricultural soil. Although multiple modelling software tools are available to simulate the environmental effect of fertilizer application to the soil, these models do not allow specification of emerging bio-based fertilizer types. Moreover, mathematical process models exist that allow optimizing the operational settings of waste management processes in order to produce an optimal bio-fertilizer quality adjusted to the local market needs. If an integrated tool would be available that couples process modelling to watershed modelling, the valorization chain could be simulated as a whole, i.e. the bio-fertilizer type and composition could be adjusted to the local watershed and environmental impacts of bio-based fertilizer production and application could more easily be assessed and controlled. The availability of such integrated tool may as such allow for improved decision and policy making regarding bio-fertilizer production and application with environmental benefits as a result.

3 Taron, Avinandan; Singh, S.; Drechsel, Pay; Ravishankar, C.; Ulrich, Andreas. 2023. Sewage sludge: a review of business models for resource recovery and reuse. Colombo, Sri Lanka: International Water Management Institute (IWMI). 98p. (Resource Recovery and Reuse Series 23) [doi: https://doi.org/10.5337/2023.211]
Resource recovery ; Resource management ; Reuse ; Sewage sludge ; Business models ; Circular economy ; Nutrients ; Energy recovery ; Organic fertilizers ; Biosolids ; Phosphorus ; Wastewater treatment plants ; Waste management ; Landfills ; Sewage treatment ; Technology ; Sludge dewatering ; Anaerobic digestion ; Incineration ; Gasification ; Pyrolysis ; Biochar ; Solid wastes ; Sludge disposal ; Composting ; Pellets ; Biogas ; Electricity generation ; Public-private partnerships ; Municipal authorities ; Policies ; Regulations ; Frameworks ; Market demand ; Costs ; Profitability ; Value chains ; Public health ; Environmental health ; Soil composition ; Case studies / Europe / USA / UK / Italy / Netherlands / Germany / Belgium / Switzerland / Spain / Denmark / Australia / Japan / China / India / Sri Lanka / Tunisia / Oman / Chile
(Location: IWMI HQ Call no: IWMI Record No: H052417)
https://www.iwmi.cgiar.org/Publications/wle/rrr/resource_recovery_and_reuse-series_23.pdf
(3.45 MB)
In many low- and middle-income countries, sewage sludge generated from wastewater treatment systems has potential environmental and health hazards. To tackle this challenge, there is a need for innovative options given the increasing concerns and policies restricting sewage sludge dumping in landfills and elsewhere, and a growing awareness about the resource value of sludge within a circular economy. In developed countries, water utilities, municipalities and the private sector are increasingly engaged in utilizing and innovating modern resource recovery technologies to capture biosolids, nutrients or energy from sewage sludge and reducing disposal. This study reviews existing approaches and business models for resource recovery and moves the discussion beyond technical feasibility. Case studies were analyzed in support of four main sets of business models depending on the targeted resource: (i) organic fertilizers, (ii) crop nutrients, (iii) energy, and (iv) organic fertilizers and nutrients along with energy. The extraction of organic fertilizers through dewatering, thickening, stabilization or long-term storage drives the first set of models followed by technological advances in phosphorus recovery. The business models on energy similarly start from conventional energy recovery processes (anaerobic digestion) and move toward incineration. The discussion covers recent advances in gasification and pyrolysis. Transforming sewage sludge into biochar, for example, can support soil fertility and carbon sequestration. The final set covers integrative approaches supporting soil fertility and energy needs. The critical step for emerging economies is to develop a wastewater management strategy and link it to a circular economy framework without having a negative impact on environmental and human health. While technologies and business models generally have a favorable policy environment, there is a lack of a regulatory framework that allows the marketing, use and export of recovered (waste-derived) resources for certain applications. For example, there needs to be an increase in industry acceptance of phosphorus recovered from sewage sludge to penetrate agricultural markets despite the currently still cheaper phosphate rock, which is a finite resource.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO