Your search found 2 records
1 Otoo, Miriam; Drechsel, Pay. (Eds.) 2018. Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon, UK: Routledge - Earthscan. 816p.
Resource recovery ; Waste management ; Business management ; Models ; Energy management ; Energy generation ; Renewable energy ; Nutrients ; Water reuse ; Low income areas ; Economic aspects ; Sanitation ; agricultural wastes ; Livestock wastes ; Organic wastes ; Organic fertilizers ; Organic matter ; Solid wastes ; Solid fuels ; Urban wastes ; Agricultural waste management ; Briquettes ; Biogas ; Faecal sludge ; Kitchen waste ; Food wastes ; Local communities ; Sustainability ; Industrial wastes ; Municipal authorities ; Abattoirs ; Ethanol ; Sugar industry ; Agroindustry ; Composting ; Cost recovery ; Public-private cooperation ; Partnerships ; Subsidies ; Carbon credits ; Excreta ; Urine ; Wastewater treatment ; Wastewater irrigation ; Forestry ; Aquaculture ; Farmers ; Fruits ; Wood production ; Financing ; Supply chain ; Fish feeding ; Risk management ; Private sector ; Private investment ; Freshwater ; Deltas ; Aquifers ; Groundwater recharge ; Downstream / Uganda / Rwanda / India / Kenya / Peru / Brazil / Mexico / Kenya / Thailand / Burkina Faso / Venezuela / Sri Lanka / Egypt / Bangladesh / Tunisia / Morocco / Ghana / Jordan / Iran / Spain / Kampala / Kigali / Sulabh / Nairobi / Santa Rosillo / Koppal / Bihar / Pune / Maharashtra / Mumias / Bangkok / Carabobo / Veracruz / Balangoda / Okhla / Bangalore / Ouagadougou / Mashhad Plain / Llobregat Delta / Tula Aquifer
(Location: IWMI HQ Call no: IWMI Record No: H048622)
http://www.iwmi.cgiar.org/Publications/Books/PDF/resource-recovery-from-waste.pdf
(28.1 MB)

2 Nikiema, Josiane; Asamoah, Bernice; Egblewogbe, M. N. Y. H.; Akomea-Agyin, J.; Cofie, Olufunke O.; Hughes, A. F.; Gebreyesus, G.; Asiedu, Kerewaa Zipporah; Njenga, M. 2022. Impact of material composition and food waste decomposition on characteristics of fuel briquettes. Resources, Conservation and Recycling Advances, 15:200095. [doi: https://doi.org/10.1016/j.rcradv.2022.200095]
Food wastes ; Fuels ; Briquettes ; Solid wastes ; Urban wastes ; Kitchen waste ; Decomposition ; Moisture content ; Calorific value ; Temperature ; Ash content ; Burning ; Sawdust ; Composting / Ghana / Kenya
(Location: IWMI HQ Call no: e-copy only Record No: H051233)
https://www.sciencedirect.com/science/article/pii/S2667378922000335/pdfft?md5=4b575de9c74f8d55139a21a18d728dec&pid=1-s2.0-S2667378922000335-main.pdf
https://vlibrary.iwmi.org/pdf/H051233.pdf
(0.87 MB) (889 KB)
This study investigated the potential of using locally available municipal solid wastes (MSW) (such as food wastes from restaurants, charcoal dust, coconut husk and shell, and sawdust) as feedstock to produce noncarbonized fuel briquettes. A low-cost briquetting machine sourced from Alfaster Industries in Kenya served to demonstrate the concept. Using decomposed food waste resulted in briquettes with higher bulk density (+4%), greater net calorific value (+18%) and lower burning rate (-24%), compared to the use of regular food waste. There was no significant difference in ash content from the two briquette types. The results also indicate that decomposing food waste and mixing it with tree-based raw materials such as coconut waste, charcoal waste or sawdust improves the quality of briquettes, and enhances the temperatures achieved during combustion. This recycling solution has the potential to serve multiple benefits in MSW management for sustainable cities while reducing rural land degradation and deforestation.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO