Your search found 2 records
1 Vollmer, D.; Shaad, K.; Souter, N. J.; Farrell, T.; Dudgeon, D.; Sullivan, C. A.; Fauconnier, I.; MacDonald, G. M.; McCartney, Matthew P.; Power, A. G.; McNally, A.; Andelman, S. J.; Capon, T.; Devineni, N.; Apirumanekul, C.; Nam Ng, C.; Shaw, M. R.; Wang, R. Y.; Lai, C.; Wang, Z.; Regan, H. M. 2018. Integrating the social, hydrological and ecological dimensions of freshwater health: the freshwater health index. Science of the Total Environment, 627:304-313. [doi: https://doi.org/10.1016/j.scitotenv.2018.01.040]
Freshwater ; Water governance ; Stakeholders ; Ecosystem services ; Ecological factors ; Water security ; Water resources ; Water management ; Water demand ; Sustainability ; Environmental health ; Indicators ; River basins / China / Dongjiang River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H048519)
https://ac.els-cdn.com/S0048969718300421/1-s2.0-S0048969718300421-main.pdf?_tid=f9ece1d2-1aa6-11e8-bd92-00000aab0f6c&acdnat=1519616689_e389c8dbeceef2e477e95bff7632ec3f
https://vlibrary.iwmi.org/pdf/H048519.pdf
(1.55 MB)
Degradation of freshwater ecosystems and the services they provide is a primary cause of increasing water insecurity, raising the need for integrated solutions to freshwater management. While methods for characterizing the multi-faceted challenges of managing freshwater ecosystems abound, they tend to emphasize either social or ecological dimensions and fall short of being truly integrative. This paper suggests that management for sustainability of freshwater systems needs to consider the linkages between human water uses, freshwater ecosystems and governance. We present a conceptualization of freshwater resources as part of an integrated social-ecological system and propose a set of corresponding indicators to monitor freshwater ecosystem health and to highlight priorities for management. We demonstrate an application of this new framework —the Freshwater Health Index (FHI) — in the Dongjiang River Basin in southern China, where stakeholders are addressing multiple and conflicting freshwater demands. By combining empirical and modeled datasets with surveys to gauge stakeholders' preferences and elicit expert information about governance mechanisms, the FHI helps stakeholders understand the status of freshwater ecosystems in their basin, how ecosystems are being manipulated to enhance or decrease water-related services, and how well the existing water resource management regime is equipped to govern these dynamics over time. This framework helps to operationalize a truly integrated approach to water resource management by recognizing the interplay between governance, stakeholders, freshwater ecosystems and the services they provide.

2 Arsenault, K. R.; Shukla, S.; Hazra, A.; Getirana, A.; McNally, A.; Kumar, S. V.; Koster, R. D.; Peters-Lidard, C. D.; Zaitchik, B. F.; Badr, H.; Jung, H. C.; Narapusetty, B.; Navari, M.; Wang, S.; Mocko, D. M.; Funk, C.; Harrison, L.; Husak, G. J.; Adoum, A.; Galu, G.; Magadzire, T.; Roningen, J.; Shaw, M.; Eylander, J.; Bergaoui, K.; McDonnell, Rachael A.; Verdin, J. P. 2020. The NASA hydrological forecast system for food and water security applications. Bulletin of the American Meteorological Society (BAMS), 101(7):E1007-E1025. [doi: https://doi.org/10.1175/BAMS-D-18-0264.1]
Hydrology ; Forecasting ; Early warning systems ; Food security ; Water security ; Drought ; Flooding ; Precipitation ; Groundwater ; Water storage ; Soil water content ; Stream flow ; Monitoring ; Land area ; Meteorological factors ; Satellite observation ; Modelling / Africa / Middle East
(Location: IWMI HQ Call no: e-copy only Record No: H049803)
https://journals.ametsoc.org/bams/article-pdf/101/7/E1007/4981535/bamsd180264.pdf
https://vlibrary.iwmi.org/pdf/H049803.pdf
(8.47 MB) (8.47 MB)
Many regions in Africa and the Middle East are vulnerable to drought and to water and food insecurity, motivating agency efforts such as the U.S. Agency for International Development’s (USAID) Famine Early Warning Systems Network (FEWS NET) to provide early warning of drought events in the region. Each year these warnings guide life-saving assistance that reaches millions of people. A new NASA multimodel, remote sensing–based hydrological forecasting and analysis system, NHyFAS, has been developed to support such efforts by improving the FEWS NET’s current early warning capabilities. NHyFAS derives its skill from two sources: (i) accurate initial conditions, as produced by an offline land modeling system through the application and/or assimilation of various satellite data (precipitation, soil moisture, and terrestrial water storage), and (ii) meteorological forcing data during the forecast period as produced by a state-of-the-art ocean–land–atmosphere forecast system. The land modeling framework used is the Land Information System (LIS), which employs a suite of land surface models, allowing multimodel ensembles and multiple data assimilation strategies to better estimate land surface conditions. An evaluation of NHyFAS shows that its 1–5-month hindcasts successfully capture known historic drought events, and it has improved skill over benchmark-type hindcasts. The system also benefits from strong collaboration with end-user partners in Africa and the Middle East, who provide insights on strategies to formulate and communicate early warning indicators to water and food security communities. The additional lead time provided by this system will increase the speed, accuracy, and efficacy of humanitarian disaster relief, helping to save lives and livelihoods.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO