Your search found 4 records
1 Rao, Krishna C.; Kvarnstrom, E.; Di Mario, L.; Drechsel, Pay. 2016. Business models for fecal sludge management. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 80p. (Resource Recovery and Reuse Series 06) [doi: https://doi.org/10.5337/2016.213]
Faecal sludge ; Resource management ; Resource recovery ; Recycling ; Business management ; Models ; Waste disposal ; Desludging ; Dumping ; Sewerage ; Waste treatment ; Waste water treatment plants ; Solid wastes ; Pollution ; Composts ; Public health ; Sanitation ; Latrines ; Defaecation ; Stakeholders ; Finance ; Cost recovery ; Energy recovery ; Biogas ; Organic fertilizers ; Private enterprises ; Institutions ; Partnerships ; Licences ; Regulations ; Transport ; Septic tanks ; Nutrients ; Taxes ; Farmers ; Urban areas ; Landscape ; Household ; Incentives ; Case studies / Asia / Africa / Latin America / South Africa / Kenya / India / Rwanda / Nepal / Philippines / Lesotho / Bangladesh / Mozambique / Ghana / Senegal / Benin / Sierra Leone / Malaysia / Ethiopia / Vietnam / Mali / Sri Lanka / Burkina Faso / Peru / Haiti / Dakar / Nairobi / Maseru / Accra / Tamale / Addis Ababa / Eastern Cape / Maputo / Dhaka / Ho Chi Minh City / Hai Phong / Dumaguete / Mombasa / Kisumu / San Fernando / Bamako / Cotonou / Ouagadougou / Kigali / Bangalore / Dharwad / Balangoda
(Location: IWMI HQ Call no: IWMI Record No: H047826)
http://www.iwmi.cgiar.org/Publications/wle/rrr/resource_recovery_and_reuse-series_6.pdf
(4.75 MB)
On-site sanitation systems, such as septic tanks and pit latrines, are the predominant feature across rural and urban areas in most developing countries. However, their management is one of the most neglected sanitation challenges. While under the Millennium Development Goals (MDGs), the set-up of toilet systems received the most attention, business models for the sanitation service chain, including pit desludging, sludge transport, treatment and disposal or resource recovery, are only emerging. Based on the analysis of over 40 fecal sludge management (FSM) cases from Asia, Africa and Latin America, this report shows opportunities as well as bottlenecks that FSM is facing from an institutional and entrepreneurial perspective.

2 Jayathilake, Nilanthi; Kumara, I. U.; Fernando, Sudarshana. 2020. Solid and liquid waste management and resource recovery in Sri Lanka: a 20 city analysis. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 83p.
Waste management ; Solid wastes ; Liquid wastes ; Resource recovery ; Reuse ; Resource management ; Urban areas ; Urban wastes ; Municipal wastewater ; Treatment plants ; Waste disposal ; Sewerage ; Septic tanks ; Faecal sludge ; Latrines ; Recycling ; Desludging ; Composting ; Waste landfills ; Water supply ; Municipal authorities ; Local authorities ; Households ; Sanitation ; Development projects / Sri Lanka / Anuradhapura / Badulla / Batticaloa / Colombo / Galle / Jaffna / Kaluthara / Kandy / Kilinochchi / Kurunegala / Mannar / Matale / Matara / Mullaithivu / Negombo / Nuwara Eliya / Puttalam / Ratnapura / Trincomalee / Vauniya
(Location: IWMI HQ Call no: e-copy only Record No: H050009)
https://publications.iwmi.org/pdf/H050009.pdf
(16.1 MB)

3 Rao, Krishna C.; Velidandla, S.; Scott, C. L.; Drechsel, Pay. 2020. Business models for fecal sludge management in India. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 199p. (Resource Recovery and Reuse Series 18: Special Issue) [doi: https://doi.org/10.5337/2020.209]
Resource recovery ; Resource management ; Reuse ; Faecal sludge ; Waste management ; Business models ; Value chains ; Waste treatment ; Desludging ; Sanitation ; Hygiene ; Sustainable Development Goals ; Solid wastes ; Septic tanks ; Toilets ; Waste disposal ; Transport ; Treatment plants ; Urban areas ; Public-private partnerships ; Stakeholders ; Nongovernmental organizations ; Financial viability ; Funding ; Marketing ; Pricing ; Investment ; Operating costs ; Cost recovery ; Benefits ; Profitability ; Risk ; Technology ; Government procurement ; Taxes ; Energy recovery ; Nutrients ; Biogas ; Composting ; Households ; Case studies / India / Tamil Nadu / Gujarat / Telangana / Bihar / Kerala / Maharashtra / Rajasthan / Delhi / Uttar Pradesh / Odisha / Jammu and Kashmir / Karnataka / West Bengal / Panaji / Goa / Chennai
(Location: IWMI HQ Call no: IWMI Record No: H050010)
https://www.iwmi.cgiar.org/Publications/wle/rrr/resource_recovery_and_reuse-series_18-special_issue.pdf
(9.13 MB)
Globally, 50% of the population relies on on-site sanitation systems (OSS) such as septic tanks and pit latrines and is, hence, in need of Fecal Sludge Management (FSM) solutions. India is a classic example, given that its government built more than 100 million toilets with the majority relying on OSS. With 400 fecal sludge treatment plants (FSTPs) in various stages of planning, procurement and construction, this report comes at an opportune time to present findings on FSM business models already implemented across India.
Interviews were conducted with a total of 105 Emptying and Transport (E&T) operators in 72 towns and cities across 16 states in India, 22 representatives from municipalities that own emptying vehicles, 18 FSTP operators and more than 30 institutions. In addition, procurement tenders for E&T and FSTPs in 13 states were analyzed.
In total, 18 business models were identified, several with energy or nutrient recovery components. The analysis of E&T operators revealed clear differences that steer a business towards success or failure. The majority of operators still dispose fecal sludge in an unsafe manner, due to the lack of official disposal or treatment sites. In comparison to sewer networks, the capital and operating costs (per capita) of FSTPs were significantly lower. The report provides evidence-based discussions on policies and recommendations for scaling and sustaining FSM.

4 Carrard, N.; Jayathilake, Nilanthi; Willetts, J. 2021. Life-cycle costs of a resource-oriented sanitation system and implications for advancing a circular economy approach to sanitation. Journal of Cleaner Production, 307:127135. [doi: https://doi.org/10.1016/j.jclepro.2021.127135]
Waste management ; Sanitation ; Cost analysis ; Economic aspects ; Financial viability ; Faecal sludge ; Waste treatment ; Resource recovery ; Reuse ; Desludging ; Composting ; Urban areas ; Households ; Local government ; Investment ; Sustainable Development Goals / Sri Lanka / Balangoda
(Location: IWMI HQ Call no: e-copy only Record No: H050437)
https://www.sciencedirect.com/science/article/pii/S0959652621013548/pdfft?md5=1c2cb1a3a9d6aff7beecc1e4192df08f&pid=1-s2.0-S0959652621013548-main.pdf
https://vlibrary.iwmi.org/pdf/H050437.pdf
(0.63 MB) (644 KB)
Implementing a circular economy approach to sanitation requires knowledge of the costs to construct, operate and maintain resource-oriented systems. Yet the dearth of data on costs of urban sanitation in general, and resource-oriented systems in particular, limit opportunities to progress sustainable sanitation in low- and middle-income countries. This paper contributes empirical data on the life-cycle costs of a resource-oriented sanitation system in urban Sri Lanka, addressing a gap in evidence about how much it costs, and who pays, for a system that integrates fecal sludge management with nutrient capture and reuse. Costs across the system life-cycle were analyzed according to: (i) cost type; (ii) phases of the sanitation chain; and (iii) distribution between actors. Over a 25-year lifespan, the system had an annualized cost of USD 2.8/person or USD 11/m3 of septage treated. Revenue from co-compost sales covered reuse-related costs plus 8% of present value costs for other phases of the sanitation chain. Findings affirm both the potential for resource-oriented sanitation to generate revenue, and the need for substantial complementary investment in the overall system. The system was found to be reliant on household investment, yet financially viable from the service provider perspective with revenue from desludging services (89%) and co-compost sales (11%) that exceeded costs over the system lifespan and in most years. The analysis of total costs, financial perspectives, and reuse specifics contributes critical evidence to inform policy and planning that supports a purposeful and equitable transition towards circular economy approaches to sanitation.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO