Your search found 1 records
1 Htwe, C. M.; Ngwe, K.; Win, K. K.; Mar, S. S. 2016. Estimating soil nutrient supplying capacity for rice (Oryza sativa L.) production. In Kywe, M.; Ngwe, K.; Oo, A. N. (Eds.). Proceedings of the Ninth Agricultural Research Conference, Nay Pyi Taw, Myanmar, 12-13 January 2016. Nay Pyi Taw, Myanmar: Yezin Agricultural University. pp.158-176.
Irrigated rice ; Soil fertility ; Fertilizer application ; NPK fertilizers ; Site specific nutrient management ; Nutrient uptake ; Agricultural production ; Seasonal cropping ; Crop yield ; High yielding varieties ; Hybrids ; Indigenous knowledge / Myanmar
(Location: IWMI HQ Call no: e-copy only Record No: H047578)
https://vlibrary.iwmi.org/pdf/H047578.pdf
(1.79 MB)
Soil nutrient supply capacity, nutrient use efficiency and fertilizer requirement for the consecutive rice cropping in irrigated system were investigated using a randomized complete block design with different fertilization treatments, including control (no fertilizer application), PK, NK, NP and NPK fertilization with four replications at Myanmar Rice Research Center (MRRC). Short duration rice varieties, Pale Thwe-1 (hybrid) and Yadanar Toc (HYV) were used to determine the soil indigenous nutrient supply capacity, to evaluate the omission plots for estimating fertilizer use efficiencies and to estimate the indigenous nutrients (N, P and K) as an requirement for working out a site specific fertilizer recommendation. The results of five treatments in four seasons indicated that the indigenous nutrient supply capacity of N, P and K (INS, IPS and IKS) ranged from (30.1 to 87.7) kg N ha-1, (8.9 to 53.7) kg P ha-1 and (43.7 to 165.3) kg K ha-1 . The nutrient use efficiencies (NUE, PUE and KUE) ranged between (2.1 to 27.8 kg kg-1 N applied), (12.8 to 63.5 kg kg-1 P applied) and (4.5 to 28.3 kg kg-1 K applied) in two rice varieties. It was also observed that rice crop could use nutrient more efficiently in dry season than in wet season. The four season's rice-rice monoculture also showed that balanced application of N, P and K promoted not only grain yield but also nutrient uptake. The yield increases of Pale Thwe-1 and Yadanar Toe over control treatment were 86, 52 % in NPK, 55, 44 % in NK and 65, and 37 % in NP a treatments, respectively. Nitrogen was the first nutrient limiting factor for yield, followed by P and then K. The greater N fertilizer requirement of Pale Thwe-1 variety was based on the greater yield target. The average amount of four season's fertilizer requirements were 160 kg N ha-1, 45 kg P ha-1 and 75 (kg K ha-1 for hybrid. Fertilizers were applied at a rate of 100 kg N ha-1, 30 kg P ha-1 and 70 kg K ha-1 for HYV. The importance of balanced fertilization in maintaining soil fertility for sustainable yield production is highly evident. The present study was conducted for only four consecutive rice cropping seasons at MRRC and the work needs further investigation.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO