Your search found 4 records
1 Wandiga, S. O.; Opondo, M.; Olago, D.; Githeko, A.; Githui, F.; Marshall, M.; Downs, T.; Opere, A.; Yanda, P. Z.; Kangalawe, R.; Kabumbuli, R.; Kirumira, E.; Kathuri, J.; Apindi, E.; Olaka, L.; Ogallo, L.; Mugambi, P.; Sigalla, R.; Nanyunja, R.; Baguma, T.; Achola, P. 2008. Vulnerability to climate-incuced highland malaria in East Africa. In Leary, N.; Conde, C.; Kulkarni, J.; Nyong, A.; Pulhin, J. (Eds.). Climate change and vulnerability. London, UK: Earthscan. pp.375-397.
Malaria ; Epidemics ; Forecasting ; Climate ; Vectorborne diseases ; Waterborne diseases / East Africa / Kenya / Uganda / Tanzania / Lake Victoria Basin
(Location: IWMI HQ Call no: 304.25 G000 LEA Record No: H040834)

2 Yanda, P.; Wandiga, S.; Kangalawe, R.; Opondo, M.Olago, D.; Githeko, A.; Downs, T.; Kabumbuli, R.; Opere, A.; Githui, F.; Kathuri, J.; Olaka, L.; Apindi, E.; Marshall, M.; Ogallo, L.; Mugambi, P.; Kirumira, E.; Nanyunja, R.; Baguma, T.; Sigalla, R.; Achola, P. 2008. Climate, malaria and cholera in the Lake Victoria Region: adapting to changing risks. In Leary, N.; Adejuwon, J.; Barros, V.; Burton, I.; Kulkarni, J.; Lasco, R. (Eds.). Climate change and adaptation. London, UK: Earthscan. pp.109-130.
Climate ; Risks ; Malaria ; Cholera ; Public health ; Control methods ; Poverty ; Households ; Villages / Tanzania / Uganda / Kenya / Lake Victoria Region
(Location: IWMI HQ Call no: 304.25 G000 LEA Record No: H040839)

3 Baker, Tracy; Kiptala, J.; Olaka, L.; Oates, N.; Hussain, Asghar; McCartney, Matthew. 2015. Baseline review and ecosystem services assessment of the Tana River Basin, Kenya. Colombo, Sri Lanka: International Water Management Institute (IWMI). 107p. (IWMI Working Paper 165) [doi: https://doi.org/10.5337/2015.223]
Ecosystem services ; Assessment ; River basins ; Land cover ; Land use ; Land management ; Pastoral lands ; Highlands ; Living standards ; Farmland ; Small scale farming ; Rainfed farming ; Coastal area ; Biodiversity conservation ; Soils ; Climate change ; Floodplains ; Flooding ; Surface water ; Sedimentation ; Natural resources ; Infrastructure ; Groundwater recharge ; Wetlands ; Forests ; Eucalyptus ; Dams ; Irrigation schemes ; Sand ; Mining ; Charcoal ; Livestock production ; Socioeconomic environment ; Water power ; Energy generation ; Food security / Kenya / Tana River Basin
(Location: IWMI HQ Call no: IWMI Record No: H047535)
http://www.iwmi.cgiar.org/Publications/Working_Papers/working/wor165.pdf
(4 MB)
The ‘WISE-UP to climate’ project aims to demonstrate the value of natural infrastructure as a ‘nature-based solution’ for climate change adaptation and sustainable development. Within the Tana River Basin, both natural and built infrastructure provide livelihood benefits for people. Understanding the interrelationships between the two types of infrastructure is a prerequisite for sustainable water resources development and management. This is particularly true as pressures on water resources intensify and the impacts of climate change increase. This report provides an overview of the biophysical characteristics, ecosystem services and links to livelihoods within the basin.

4 Wilkinson, J. L.; Boxall, A. B. A.; Kolpin, D. W.; Leung, K. M. Y.; Lai, R. W. S.; Galban-Malagon, C.; Adell, A. D.; Mondon, J.; Metian, M.; Marchant, R. A.; Bouzas-Monroy, A.; Cuni-Sanchez, A.; Coors, A.; Carriquiriborde, P.; Rojo, M.; Gordon, C.; Cara, M.; Moermond, M.; Luarte, T.; Petrosyan, V.; Perikhanyan, Y.; Mahon, C. S.; McGurk, C. J.; Hofmann, T.; Kormoker, T.; Iniguez, V.; Guzman-Otazo, J.; Tavares, J. L.; De Figueiredo, F. G.; Razzolini, M. T. P.; Dougnon, V.; Gbaguidi, G.; Traore, O.; Blais, J. M.; Kimpe, L. E.; Wong, M.; Wong, D.; Ntchantcho, R.; Pizarro, J.; Ying, G.-G.; Chen, C.-E.; Paez, M.; Martinez-Lara, J.; Otamonga, J.-P.; Pote, J.; Ifo, S. A.; Wilson, P.; Echeverria-Saenz, S.; Udikovic-Kolic, N.; Milakovic, M.; Fatta-Kassinos, D.; Ioannou-Ttofa, L.; Belusova, V.; Vymazal, J.; Cardenas-Bustamante, M.; Kassa, B. A.; Garric, J.; Chaumot, A.; Gibba, P.; Kunchulia, I.; Seidensticker, S.; Lyberatos, G.; Halldorsson, H. P.; Melling, M.; Shashidhar, T.; Lamba, M.; Nastiti, A.; Supriatin, A.; Pourang, N.; Abedini, A.; Abdullah, O.; Gharbia, S. S.; Pilla, F.; Chefetz, B.; Topaz, T.; Yao, K. M.; Aubakirova, B.; Beisenova, R.; Olaka, L.; Mulu, J. K.; Chatanga, P.; Ntuli, V.; Blama, N. T.; Sherif, S.; Aris, A. Z.; Looi, L. J.; Niang, M.; Traore, S. T.; Oldenkamp, R.; Ogunbanwo, O.; Ashfaq, M.; Iqbal, M.; Abdeen, Z.; O’Dea, A.; Morales-Saldana, J. M.; Custodio, M.; de la Cruz, H.; Navarrete, I.; Carvalho, F.; Gogra, A. B.; Koroma, B. M.; Cerkvenik-Flajs, V.; Gombac, M.; Thwala, M.; Choi, K.; Kang, H.; Ladu, J. L. C.; Rico, A.; Amerasinghe, Priyanie; Sobek, A.; Horlitz, G.; Zenker, A. K.; King, A. C.; Jiang, J.-J.; Kariuki, R.; Tumbo, M.; Tezel, U.; Onay, T. T.; Lejju, J. B.; Vystavna, Y.; Vergeles, Y.; Heinzen, H.; Perez-Parada, A.; Sims, D. B.; Figy, M.; Good, D.; Teta, C. 2022. Pharmaceutical pollution of the world’s rivers. Proceedings of the National Academy of Sciences of the United States of America, 119(8):e2113947119. [doi: https://doi.org/10.1073/pnas.2113947119]
Pharmaceutical pollution ; Rivers ; Water pollution ; Contamination ; Aquatic environment ; Antimicrobials ; Environmental health ; Human health ; Environmental monitoring ; Wastewater ; Socioeconomic aspects ; National income ; Datasets
(Location: IWMI HQ Call no: e-copy only Record No: H050958)
https://www.pnas.org/content/pnas/119/8/e2113947119.full.pdf
https://vlibrary.iwmi.org/pdf/H050958.pdf
(6.14 MB) (6.14 MB)
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO