Your search found 7 records
1 Qadir, Manzoor; Scott, C. A. 2010. Non-pathogenic trade-offs of wastewater irrigation. In Drechsel, Pay; Scott, C. A.; Raschid-Sally, Liqa; Redwood, M.; Bahri, Akissa (Eds.). Wastewater irrigation and health: assessing and mitigating risk in low-income countries. London, UK: Earthscan; Ottawa, Canada: International Development Research Centre (IDRC); Colombo, Sri Lanka: International Water Management Institute (IWMI). pp.101-126. (Also in French).
Wastewater irrigation ; Water quality ; Nutrients ; Soil properties ; Metals ; Semimetals ; Risk assessment
(Location: IWMI HQ Call no: IWMI 631.7.5 G000 DRE Record No: H042606)
https://publications.iwmi.org/pdf/H042606.pdf
https://vlibrary.iwmi.org/pdf/H042606.pdf
(0.27 MB)
The volume and extent of urban wastewater generated by domestic, industrial and commercial water use has increased with population, urbanization, industrialization, improved living conditions and economic development. Most developing-country governments do not have sufficient resources to treat wastewater. Therefore, despite official restrictions and potential health implications, farmers in many developing countries use wastewater in diluted, untreated or partly treated forms with a large range of associated benefits. Aside from microbiological hazards, the practice can pose a variety of other potential risks: excessive and often imbalanced addition of nutrients to the soil; build-up of salts in the soils (depending on the source water, especially sodium salts); increased concentrations of metals and metalloids (particularly where industries are present) reaching phytotoxic levels over the long term; and accumulation of emerging contaminants, like residual pharmaceuticals. As these possible trade-offs of wastewater use vary significantly between sites and regions, it is necessary to carefully monitor wastewater quality, its sources and use for location-specific risk assessment and risk reduction.

2 Simmons, R.; Qadir, Manzoor; Drechsel, Pay. 2010. Farm-based measures for reducing human and environmental health risks from chemical constituents in wastewater. In Drechsel, Pay; Scott, C. A.; Raschid-Sally, Liqa; Redwood, M.; Bahri, Akissa (Eds.). Wastewater irrigation and health: assessing and mitigating risk in low-income countries. London, UK: Earthscan; Ottawa, Canada: International Development Research Centre (IDRC); Colombo, Sri Lanka: International Water Management Institute (IWMI). pp.209-238. (Also in French).
Wastewater irrigation ; Pollutants ; Metals ; Semimetals ; Soil amendments ; Bioremediation ; Nutrients ; Arsenic ; Salinity ; Irrigation methods
(Location: IWMI HQ Call no: IWMI 631.7.5 G000 DRE Record No: H042611)
https://publications.iwmi.org/pdf/H042611.pdf
https://vlibrary.iwmi.org/pdf/H042611.pdf
(0.26 MB)
There is a significant imbalance between the number of publications describing potential and actual environmental and health impacts from chemically contaminated wastewater, and reports outlining concrete options to minimize the related risks where conventional wastewater treatment is not available. This gap applies more to inorganic and organic contaminants than excess salts or nutrients. This chapter outlines some of the options available that could be considered in and around the farm, looking at heavy metals, salts, excess nutrients and organic contaminants. The emphasis is placed on low-cost options applicable in developing countries. While such measures can reduce negative impacts to a certain extent, it remains crucial to ensure that hazardous chemicals are replaced in production processes; industrial wastewater is treated at source and/or separated from other wastewater streams used for irrigation purposes; and fertilizer application rates and related possible subsidies adjusted to avoid over- fertilization.

3 Simmons, R.; Qadir, Manzoor; Drechsel, Pay. 2011. Mesures mises en oeuvre aux champs pour reduire les risques pour la santé humaine et l’environnement lies aux constituants chimiques des eaux usees. In French. [Farm-based measures for reducing human and environmental health risks from chemical constituents in wastewater]. In Drechsel, Pay; Scott, C. A.; Raschid-Sally, Liqa; Redwood, M.; Bahri, Akissa. L’irrigation avec des eaux usees et la sante: evaluer et attenuer les risques dans les pays a faible revenu. Colombo, Sri Lanka: International Water Management Institute (IWMI); Ottawa, Canada: International Development Research Centre (IDRC); Quebec, Canada: University of Quebec. pp.227-257. (Also in English).
Wastewater irrigation ; Pollutants ; Metals ; Semimetals ; Soil amendments ; Bioremediation ; Nutrients ; Arsenic ; Salinity ; Irrigation methods
(Location: IWMI HQ Call no: IWMI Record No: H044468)
http://www.iwmi.cgiar.org/Research_Impacts/Research_Themes/Theme_3/PDF/French%20book.pdf
https://vlibrary.iwmi.org/pdf/H044468.pdf
(0.80 MB) (5.96MB)
There is a significant imbalance between the number of publications describing potential and actual environmental and health impacts from chemically contaminated wastewater, and reports outlining concrete options to minimize the related risks where conventional wastewater treatment is not available. This gap applies more to inorganic and organic contaminants than excess salts or nutrients. This chapter outlines some of the options available that could be considered in and around the farm, looking at heavy metals, salts, excess nutrients and organic contaminants. The emphasis is placed on low-cost options applicable in developing countries. While such measures can reduce negative impacts to a certain extent, it remains crucial to ensure that hazardous chemicals are replaced in production processes; industrial wastewater is treated at source and/or separated from other wastewater streams used for irrigation purposes; and fertilizer application rates and related possible subsidies adjusted to avoid over- fertilization.

4 Qadir, Manzoor; Scott, C. A. 2011. Contraintes non pathogenes liees a l’irrigation avec des eaux usees. In French. [Non-pathogenic trade-offs of wastewater irrigation]. In Drechsel, Pay; Scott, C. A.; Raschid-Sally, Liqa; Redwood, M.; Bahri, Akissa. L’irrigation avec des eaux usees et la sante: evaluer et attenuer les risques dans les pays a faible revenu. Colombo, Sri Lanka: International Water Management Institute (IWMI); Ottawa, Canada: International Development Research Centre (IDRC); Quebec, Canada: University of Quebec. pp.109-138. (Also in English).
Wastewater irrigation ; Water quality ; Nutrients ; Soil properties ; Metals ; Semimetals ; Risk assessment
(Location: IWMI HQ Call no: IWMI Record No: H044463)
http://www.iwmi.cgiar.org/Research_Impacts/Research_Themes/Theme_3/PDF/French%20book.pdf
https://vlibrary.iwmi.org/pdf/H044463.pdf
(1.23 MB) (5.96MB)
The volume and extent of urban wastewater generated by domestic, industrial and commercial water use has increased with population, urbanization, industrialization, improved living conditions and economic development. Most developing-country governments do not have sufficient resources to treat wastewater. Therefore, despite official restrictions and potential health implications, farmers in many developing countries use wastewater in diluted, untreated or partly treated forms with a large range of associated benefits. Aside from microbiological hazards, the practice can pose a variety of other potential risks: excessive and often imbalanced addition of nutrients to the soil; build-up of salts in the soils (depending on the source water, especially sodium salts); increased concentrations of metals and metalloids (particularly where industries are present) reaching phytotoxic levels over the long term; and accumulation of emerging contaminants, like residual pharmaceuticals. As these possible trade-offs of wastewater use vary significantly between sites and regions, it is necessary to carefully monitor wastewater quality, its sources and use for location-specific risk assessment and risk reduction.

5 Drechsel, Pay; Qadir, Manzoor; Wichelns, D. (Eds.) 2015. Wastewater: economic asset in an urbanizing world. Dordrecht, Netherlands: Springer. 287p. [doi: https://doi.org/10.1007/978-94-017-9545-6]
Wastewater treatment ; Water reuse ; Economic analysis ; Urbanization ; Sewage sludge ; Health hazards ; Pathogens ; Cost benefit analysis ; Finance ; Environmental risk assessment ; Ecosystem services ; Socioeconomic environment ; Agriculture ; Resource management ; Recycling ; Aquifers ; Groundwater recharge ; Industrial uses ; Businesses ; Models ; Energy consumption ; Nutrients ; Phosphorus ; Nitrogen ; Composting ; Water pollution ; Water quality ; WHO ; Metals ; Semimetals ; Salinity ; Gender ; Private sector ; Institutions ; Legislation ; Regulations ; Farmers ; Crops ; Landscape ; Irrigation ; Biogas ; Markets / Mexico / Cyprus / India / Australia / Iran / Bangalore / Amani Doddakere Lake / Mezquital Valley Aquifer / Ezousa Aquifer / Akrotiri Aquifer / Bolivar Aquifer / Mashhad Plain Aquifer
(Location: IWMI HQ Call no: IWMI, e-copy SF Record No: H046957)
http://vlibrary.iwmi.org/pdf/H046957_TOC.pdf
(0.28 MB)

6 Qadir, Manzoor; Mateo-Sagasta, Javier; Jimenez, B.; Siebe, C.; Siemens, J.; Hanjra, Munir A. 2015. Environmental risks and cost-effective risk management in wastewater use systems. In Drechsel, Pay; Qadir, Manzoor; Wichelns, D. (Eds.). Wastewater: economic asset in an urbanizing world. Dordrecht, Netherlands: Springer. pp.55-72.
Environmental impact assessment ; Risk management ; Cost benefit analysis ; Wastewater treatment ; Wastewater irrigation ; Water use ; Agriculture ; Water quality ; On-farm research ; Metals ; Semimetals ; Salinity ; Pollutants ; Nutrients
(Location: IWMI HQ Call no: e-copy SF Record No: H046961)

7 Qadir, M.; Drechsel, Pay. 2016. Contaminant management in water reuse systems. In Eslamian, S. (Ed.). Urban water reuse handbook. Boca Raton, FL, USA: CRC Press. pp. 525-532.
Water reuse ; Contamination ; Pollution control ; Wastewater irrigation ; Wastewater treatment ; Freshwater ; Risk management ; Metals ; Semimetals ; Cadmium ; Salts ; Ions ; Crop management ; Soil management ; Nutrients ; Irrigation management ; Drainage ; Salinity control ; Organic compounds ; Diversification ; Public health
(Location: IWMI HQ Call no: e-copy only Record No: H047361)
https://vlibrary.iwmi.org/pdf/H047361.pdf
(0.84 MB)
Although wastewater has been increasingly used to grow a range of crops for income generation and livelihood resilience in urban and peri-urban areas, irrigation with untreated or partially treated wastewater may result in negative impacts on irrigated crops, soils, and groundwater along with implications for human and environmental health through chemical and microbial risks. With the potential for environmental risks due to concentrations above the maximum allowable levels, the major chemical constituent groups that need to be addressed in wastewater-irrigated environments are metals and metalloids, essential nutrients, salts and specific ionic species, and persistent organic pollutants. To avoid potential negative impacts, conventional wastewater treatment options, which can control the release of these contaminants into the environment, remain the key to protecting water quality for beneficial uses in agriculture, aquaculture, and agroforestry systems. Effective legislation, monitoring, and enforcement are also essential and often neglected management strategies. At the farm level, some low-cost irrigation, soil, and crop management options, discussed in this chapter, are available to reduce the risk from contaminants added through wastewater irrigation.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO