Your search found 4 records
1 Nicol, Alan; Langan, Simon; Victor, M.; Gonsalves, J. (Eds.) 2015. Water-smart agriculture in East Africa. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE); Kampala, Uganda: Global Water Initiative East Africa (GWI EA). 352p. [doi: https://doi.org/10.5337/2015.203]
Agriculture ; Water productivity ; Small scale farming ; Irrigation schemes ; Drip irrigation ; Vegetable growing ; Climate change ; Adaptation ; Food security ; Drought tolerance ; Crops ; Sorghum ; Rice ; Maize ; Livestock production ; Land management ; Watershed management ; Rain ; Water harvesting ; Water conservation ; Water use ; Water storage ; Groundwater ; Rehabilitation ; Soil conservation ; Participatory approaches ; Highlands ; Erosion ; Sustainable development ; Arid lands ; Catchment areas ; Wetlands ; Income ; Incentives ; Smallholders ; Dams ; Gender ; Natural resources management ; Learning ; Collective action ; Case studies / Africa / Tanzania / Ethiopia / Africa South of Sahara / Uganda / Horn of Africa / Manyoni / Singida / Agago / Otuke / Nile River Basin / Birr Watershed / Debre Mawi Watershed
(Location: IWMI HQ Call no: IWMI Record No: H046950)
http://www.iwmi.cgiar.org/Publications/wle/corporate/water-smart_agriculture_in_east_africa.pdf
(8 MB)

2 Addisie, M. B.; Ayele, G. K.; Gessess, A. A.; Tilahun, S. A.; Moges, M. M.; Schmitter, Petra S.; Steenhuis, T. S. 2015. Hydro-geomorphological features at gully heads in the humid northern Ethiopian Highlands, Birr Watershed. Paper presented at the 3rd International Conference on the Advancements of Science and Technology [ICAST], Bahir Dar, Ethiopia, 8-9 May 2015. 7p.
Hydrogeology ; Geomorphology ; Morphology ; Humid zones ; Highlands ; Watersheds ; Water table ; Soil properties ; Gully erosion ; Landscape ; Case studies / Ethiopia / Ethiopian Highlands / Birr Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H047312)
https://vlibrary.iwmi.org/pdf/H047312.docx
(0.36 MB)
The study was conducted in the Birr watershed at twelve gully heads located close to each other. The survey includes measurements of morphological features, soil properties, water table elevations and catchment characteristics including erosion at each gully head. The analysis showed that gully head morphology could be explained by the role of different gully head controlling factors. The result suggested the maximum rate of head cut retreat reaches from 0 to 22.5m. There was no head retreat recorded from the arrested heads relative to unprotected heads. Compared to semiarid highlands of northern Ethiopia, the average short term head cut retreat was 12 fold greater. From the direct shear test, angle of internal friction by far greater than the slope of gully heads which are located at flat lands. The width depth ratio showed that the shallow depth heads were controlled by fluvial erosion whereas for the deep gully heads both fluvial and mass wasting due tension cracks are operating. In this study a significant power relationship established between the volume of the gully head and the length of retreat at the active gullies with V = 4.85 L1.05 (R2 = 0.91 and P= 0.042) which is different from the relation obtained from the entire gully system as a result of varies controlling factors.

3 Addisie, M. B.; Ayele, G. K.; Gessesse, A. A.; Tilahun, S. A.; Zegeye, A. D.; Moges, M.; Schmitter, Petra; Langendoen, E. J.; Steenhuis, T. S. 2015. Reducing surface and subsurface water flow effect on gullies through low cost measures [Abstract only] Paper presented at the 10th Alexander von Humboldt Conference 2015 on Water-Food-Energy River and Society in the Tropics. EGU Topical Conference Series, Addis Ababa, Ethiopia, 18-20 November 2015. 1p.
Surface water ; Groundwater ; Flow discharge ; Gully erosion ; Erosion control ; Watersheds ; Water table ; Cost analysis ; Soil properties ; Case studies / Ethiopia / Amhara State / Birr Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H047331)
https://vlibrary.iwmi.org/pdf/H047331.pdf
(0.04 MB)
Gully erosion in the humid Ethiopian highlands intensified in recent decades. The study was conducted in the Birr watershed located south west of Bahir Dar the capital of Amhara regional state, Ethiopia. We studied 14 gullies having similar morphology at three sub watersheds. The watershed covers a total area of 414 ha. The monitoring continued over the 2013 to 2014 monsoon season to better understand the factors controlling gully erosion and the effectiveness of erosion control structures. Perched ground water table was measured at the gully heads and erosion pins were installed to monitor the rate of recession from uncontrolled heads. Though soil properties, ground cover, gully morphology had small contribution for the gully development; water fall effect at the head of the gully and elevated water table depth at both heads and banks played the key role. Therefore the study focused on reducing the water fall and elevated water table effect by applying two low cost gully control approaches. The first approach was regrading the gully heads and banks at 45o and the second approach follows regrading the gully heads at 45o and putting a graded type of stone rip rap. Large stones were anchored at the toe of the head maintaining the stable gully bed slope. The result shows that unprotected gully heads retreat an average of 4m which is equivalent to 37m3 volume of soil loss. The maximum and minimum head cut retreat was between 0 and 22.5m. The total area damaged by annual gully head retreat was 240m2 and total volume of soil lost was 444m3. The treated gully heads did not show any retreat during the monitoring period. Compared with simple reshaping of gully heads, integration with Stone rip rap was an effective and low cost measure in the study watershed. Plantation could not stop the upslope migration of heads though it had the potential to trap sediments down slope. Heads with stone rip rap allows fast re vegetation whereas unprotected reshaped heads and banks took longer time to re vegetate and stabilized. Time of reshaping was important for the stability of banks and heads.

4 Addisie, M. B.; Ayele, G. K.; Gessess, A. A.; Tilahun, S. A.; Zegeye, A. D.; Moges, M. M. [NARS]; Schmitter, Petra; Langendoen, E. J.; Steenhuis, T. S. 2015. Hydrological and morphological factors at gully heads in the humid northern Ethiopian Highlands, Birr watershed [Abstract only] In Nyssen J., Enyew A., Poesen J et al. (Eds.). International Conference on Tropical Lakes in a Changing Environment: Water, Land, Biology, Climate and Humans (TropiLakes), Bahir Dar, Ethiopia, 23-29 September 2015. Book of Abstracts. Bahir Dar, Ethiopia: Bahir Dar University. pp.72.
Hydrological factors ; Gully erosion ; Humid climate ; Water table ; Watersheds ; Highlands ; Soils / Ethiopia / Birr Watershed / Ethiopian Highlands
(Location: IWMI HQ Call no: e-copy only Record No: H047416)
https://vlibrary.iwmi.org/pdf/H047416.pdf
(0.10 MB)
In the Ethiopian highlands, gully erosion is severe. Although attempts to prevent gullying, it remains a challenge. Our objectives are to understand better the processes that control gully head cut retreat. The study was conducted in Birr watershed located at South West of Bahir Dar, Ethiopia. Twelve gully heads were selected and monitored from July to October, 2014. We measured gully head morphology, length of recession via pegging technique, soil analysis to determine soil shear strength, physical and chemical properties, water table elevations and catchment physical characteristics. Two active gully head cuts were arrested with stone riprap after regarding at 450. The result shows that the maximum rate of head cut retreat was between 0 to 22.5m. There was no head retreat observed from the protected heads compared with unprotected heads. The average short term head cut retreat was much greater than that observed in semiarid highlands of northern Ethiopia. The greater gulley rate of recession in the humid monsoon climate is likely caused by the water table that was above the gully bottom. In August when the soil became saturated, about 45% of head cut migration occurred. Thus the water table contributed to the slumping of gully heads and weakened the strength of the soil cohesion. The soil shear strength test result shows, angle of internal friction was by far greater than the slope of gully heads where heads are located in the periodically saturated flat lands. The width depth ratio showed that the shallow depth heads were controlled by fluvial erosion whereas for the deep gully heads both fluvial and mass wasting due to tension cracks was the main driving force. Both the water table control and protecting the head cuts of shallow gullies plays a key role in reducing the sediment contribution of gully in the humid Ethiopian highlands.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO