Your search found 3 records
1 Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, A.; Singh, S.; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, S.; Gupta, S.; Pujar, G.; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, P.; Singh, J. S.; Chitale, V.; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, D.; Karnatak, H.; Saran, S.; Amarnath, Giriraj; Padalia, H.; Kale, M.; Nandy, S.; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, C.; Singh, D. K.; Devagiri, G. M.; Talukdar, G.; Panigrahy, R. K.; Singh, H.; Sharma, J. R.; Haridasan, K.; Trivedi, S.; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, M.; Nagabhatla, N.; Prasad, N.; Tripathi, O. P.; Prasad, P. R. C.; Dash, P.; Qureshi, Q.; Tripathi, S. K.; Ramesh, B. R.; Gowda, B.; Tomar, S.; Romshoo, S.; Giriraj, S.; Ravan, S. A.; Behera, S. K.; Paul, S.; Das, A. K.; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, U.; Menon, A. R. R.; Srivastava, G.; Sharma, N. S.; Mohapatra, U. B.; Peddi, A.; Rashid, H.; Salroo, I.; Krishna, P. H.; Hajra, P. K.; Vergheese, A. O.; Matin, S.; Chaudhary, S. A.; Ghosh, S.; Lakshmi, U.; Rawat, D.; Ambastha, K.; Malik, A. H.; Devi, B. S. S.; Gowda, B.; Sharma, K. C.; Mukharjee, P.; Sharma, A.; Davidar, P.; Raju, R. R. V.; Katewa, S. S.; Kant, S.; Raju, V. S.; Uniyal, B. P.; Debnath, B.; Rout, D. K.; Thapa, R.; Joseph, S.; Chhetri, P.; Ramachandran, R. M. 2015. New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39:142-159. [doi: https://doi.org/10.1016/j.jag.2015.03.003]
Satellite imagery ; Remote sensing ; Vegetation ; Climate change ; Temperature ; Precipitation ; Scrublands ; Grasslands ; Ecology ; Global positioning systems ; Land cover ; Assessment ; Cultivation / India
(Location: IWMI HQ Call no: e-copy only Record No: H047008)
https://vlibrary.iwmi.org/pdf/H047008.pdf
(2.48 MB)
A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. Weused 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge’s life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (http://bis.iirs.gov.in).

2 Pani, Peejush; Alahacoon, Niranga; Amarnath, Giriraj; Bharani, Gurminder; Mondal, S.; Jeganathan, C.. 2016. Comparison of SPI [Standardized Precipitation Index] and IDSI [Integrated Drought Severity Index] applicability for agriculture drought monitoring in Sri Lanka. Paper presented at the 37th Asian Conference on Remote Sensing (ACRS): Promoting Spatial Data Infrastructure for Sustainable Economic Development, Colombo, Sri Lanka, 17-21 October 2016. 8p.
Precipitation ; Drought ; Monitoring ; Agriculture ; Climate change ; Meteorology ; Remote sensing ; Vegetation ; Rain ; Temperature ; Soil moisture ; Spatial distribution ; Statistical analysis / Sri Lanka
(Location: IWMI HQ Call no: e-copy only Record No: H047942)
https://vlibrary.iwmi.org/pdf/H047942.pdf
Increasing frequency of drought events coupled uncertainty imparted by climate change pose grave threat to agriculture and thereby overall food security. This is especially true in South Asian region where world’s largest concentration of people depends on agriculture for their livelihood. Indices derived from remote sensing datasets signifying different bio-physical aspects are increasingly used for operational drought monitoring. This study focuses on evaluating a newly created index for agricultural drought referred as Integrated Drought Severity Index (IDSI) in comparison with the traditional Standardized Precipitation Index (SPI) primarily representing precipitation condition to delineate drought using custom created ArcGIS toolbox for a period of fourteen years (2001-2014) in Sri Lanka. SPI created using remotely sensed PERSIANN precipitation dataset was compared with the IDSI created using hybrid datasets. IDSI is created based on seamless mosaic of remotely sensed multi-sensor data that takes vegetation (computed from MODIS data product MOD09A1), temperature (MOD11A2) and precipitation (TRMM & GPM) status into consideration. The comparative study was made to assess the efficiency of newly created index and ArcGIS toolbox techniques for near real-time monitoring of spatio-temporal extent of agricultural drought. The result showed significant correlation of 0.85 between the two indices signifying the potential of using IDSI that integrates the response of agriculture drought variables (vegetation, rainfall, temperature and soil moisture) in monitoring shortterm drought and application in risk reduction measures.

3 Mondal, S.; Jeganathan, C.; Amarnath, Giriraj; Pani, Peejush. 2017. Time-series cloud noise mapping and reduction algorithm for improved vegetation and drought monitoring. GIScience and Remote Sensing, 54(2):202-229. [doi: https://doi.org/10.1080/15481603.2017.1286726]
Climate change ; Drought ; Clouds ; Noise ; Monitoring ; Vegetation ; Satellite observation ; Satellite imagery ; Land cover mapping ; Remote sensing ; Spatial distribution ; Models ; Statistical methods ; Performance evaluation ; Homogenization ; Agriculture / Sri Lanka
(Location: IWMI HQ Call no: e-copy only Record No: H048010)
https://vlibrary.iwmi.org/pdf/H048010.pdf
Moderate Resolution Imaging Spectro-radiometer (MODIS) time-series Normalized Differential Vegetation Index (NDVI) products are regularly used for vegetation monitoring missions and climate change analysis. However, satellite observation is affected by the atmospheric condition, cloud state and shadows introducing noise in the data. MODIS state flag helps in understanding pixel quality but overestimates the noise and hence its usability requires further scrutiny. This study has analyzed MODIS MOD09A1 annual data set over Sri Lanka. The study presents a simple and effective noise mapping method which integrates four state flag parameters (i.e. cloud state, cloud shadow, cirrus detected, and internal cloud algorithm flag) to estimate Cloud Possibility Index (CPI). Usability of CPI is analyzed along with NDVI for noise elimination. Then the gaps generated due to noise elimination are reconstructed and performance of the reconstruction model is assessed over simulated data with five different levels of random gaps (10–50%) and four different statistical measures (i.e. Root mean square error, mean absolute error, mean bias error, and mean absolute percentage error). The sample-based analysis over homogeneous and heterogeneous pixels have revealed that CPI-based noise elimination has increased the detection accuracy of number of growing cycle from 45–60% to 85–95% in vegetated regions. The study cautions that usage of time-series NDVI data without proper cloud correction mechanism would result in wrong estimation about spatial distribution and intensity of drought, and in our study 50% of area is wrongly reported to be under drought though there was no major drought in 2014.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO