Your search found 4 records
1 Tahir, A. A.; Chevallier, P.; Arnaud, Y.; Ashraf, M.; Bhatti, Muhammad Tousif. 2015. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region) Science of the Total Environment, 505:748-761. [doi: https://doi.org/10.1016/j.scitotenv.2014.10.065]
Snow cover ; Glaciers ; Snowmelt ; Hydrological regime ; River basins ; Climatic data ; Meteorological stations ; Satellite observation ; Water resources ; Catchment areas / Pakistan / India / Western Himalayas / Karakoram Region / Indus River Basin / Astore River Basin / Hunza Basin
(Location: IWMI HQ Call no: e-copy only Record No: H046709)
http://publications.iwmi.org/pdf/H046709.pdf
https://vlibrary.iwmi.org/pdf/H046709.pdf
(4.13 MB)
A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya–Karakoram–Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya — south latitude of the UIB) and Hunza (Central Karakoram — north latitude of the UIB) River basins. Studying the snow cover, its spatiotemporal change and the hydrological response of these sub-basins is important so as to better managewater resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previouslystudied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management.

2 Ashraf, M.; Bhatti, Muhammad Tousif; Shakir, A. S.; Tahir, A. A.; Ahmad. A. 2015. Sediment control interventions and river flow dynamics: impact on sediment entry into the large canals. Environmental Earth Sciences, 74(7):5465-5474. [doi: https://doi.org/10.1007/s12665-015-4604-3]
Sedimentation ; Rivers ; Stream flow ; Monsoon climate ; Flooding ; Canal irrigation ; Water yield ; Flow discharge / India / Pakistan / Chenab River / Marala Ravi Link Canal / Upper Chenab Canal
(Location: IWMI HQ Call no: e-copy only Record No: H047101)
https://vlibrary.iwmi.org/pdf/H047101.pdf
(0.77 MB)
At Marala barrage, two canals, i.e. Marala Ravi Link Canal (MRLC) and Upper Chenab Canal (UCC) off-take from left side of the River Chenab. MRLC has a very old history of experiencing sedimentation issues. Several attempts have been made to counterfoil or minimize this problem in the recent past. Two remarkable measures are the remodeling of MRLC in 2000-2001 (in-tervention-1) and the shifting of the confluence point of a heavily sediment-laden upstream tributary of the Chenab River by construction of a spur dike in 2004 (intervention-2). This paper investigates the effectiveness of these structural interventions as sedimentation control measures. The baseline period is selected from 1997 to 2000 and the impact is analyzed for two post-intervention time steps, i.e. evaluation period-1 ranging from 2001 to 2004 and evaluation period-2 from 2005 to 2011. Results obtained from double mass analysis revealed that sediment load increased by 33 and 8 % due to intervention-1, while decreased by 12 and 22 % due to intervention-2 in MRLC and UCC, respectively. The results suggest that monsoon floods are mainly responsible for sediment loading in the canals (66 % for UCC and 73 % for MRLC), supported by the finding that effective discharge (1900 m3 s-1) is almost twice the mean annual river discharge. The discharge classes between 900 and 2900 m3 s- 1 are mainly responsible for major proportion (89 % in MRLC and 86 % in UCC) of the total sediment load over the 15-year study period. The intervention-1 could not minimize the sediment entry into the canals; rather it aggravated the situation. The intervention-2, however, proved a useful structural measure in this regard.

3 Bhatti, Muhammad Tousif; Sarwar, M. K.; Tahir, A. A.; Yar, M. 2017. Effect of irrigation application on soil and land productivity of wheat under semi-arid environment. Journal of Agricultural Research, 55(1):1-14.
Soil fertility ; Soil sampling ; Irrigation management ; Irrigation water ; Land productivity ; Triticum aestivum ; Canals ; Groundwater ; Semiarid zones ; Wheat ; Crop yield ; Electrical conductivity ; Water supply / Pakistan
(Location: IWMI HQ Call no: e-copy only Record No: H048789)
http://apply.jar.punjab.gov.pk/upload/1496899694_126_1._JAR_396.pdf
https://vlibrary.iwmi.org/pdf/H048789.pdf
(365 KB)
A study was conducted in Sargodha, Pakistan during the year 2011 to testify irrigation practices as a method for reclaiming salt affected soil. Field experiments were conducted on saline-sodic and uncultivated land divided into 12 field plots. Six irrigation treatments, each replicated on two field plots, were applied to test the responses of soil and wheat crop yield. Six irrigation treatments combined two variables: (i) source of irrigation (canal water, brackish groundwater and mixed in 50:50 proportion) and (ii) irrigation scheduling (fixed-rotation or Traditional Warabandi (TWB) and 75% management-allowed depletion (MAD)). The electrical conductivity (ECe) and sodium adsorption ratio (SAR) of saturated paste extracts of soil were observed at four depth intervals ranging from zero to 90 cm during the four crop growth stages. Only top 15 cm soil layers of field plots could be reclaimed upto the permissible ECe level of < 4 dS/m where canal water was applied for irrigation. In deeper layers (31 to 90cm) the ECe increased from the ambient levels in response to irrigation treatments. The crop yield (wheat grains in kg/ha) was measured from all individual field plots. Canal water application with 75% MAD scheduling proved to be the optimum treatment giving average yield of 1265 kg per hectare while the treatment with groundwater application under TWB showed the lowest average yield (435 kg/ha).

4 Ijaz, M. A.; Ashraf, M.; Hamid, S.; Niaz, Y.; Waqas, M. M.; Tariq, M. A. U. R.; Saifullah, M.; Bhatti, Muhammad Tousif; Tahir, A. A.; Ikram, K.; Shafeeque, M.; Ng, A. W. M. 2022. Prediction of sediment yield in a data-scarce river catchment at the sub-basin scale using gridded precipitation datasets. Water, 14(9):1480. (Special issue: Innovate Approaches to Sustainable Water Resource Management under Population Growth, Lifestyle Improvements, and Climate Change) [doi: https://doi.org/10.3390/w14091480]
Sediment yield ; Forecasting ; River basins ; Catchment areas ; Precipitation ; Datasets ; Hydrological modelling ; Watershed management ; Dams ; Runoff ; Sediment load ; Soil erosion ; Soil types ; Land use ; Rain ; Semiarid zones ; Spatial distribution / Pakistan / Gomal River Catchment / Kot Murtaza Barrage / Gomal Zam Dam
(Location: IWMI HQ Call no: e-copy only Record No: H051151)
https://www.mdpi.com/2073-4441/14/9/1480/pdf?version=1652347380
https://vlibrary.iwmi.org/pdf/H051151.pdf
(2.15 MB) (2.15 MB)
Water-related soil erosion is a major environmental concern for catchments with barren topography in arid and semi-arid regions. With the growing interest in irrigation infrastructure development in arid regions, the current study investigates the runoff and sediment yield for the Gomal River catchment, Pakistan. Data from a precipitation gauge and gridded products (i.e., GPCC, CFSR, and TRMM) were used as input for the SWAT model to simulate runoff and sediment yield. TRMM shows a good agreement with the data of the precipitation gauge (˜1%) during the study period, i.e., 2004–2009. However, model simulations show that the GPCC data predicts runoff better than the other gridded precipitation datasets. Similarly, sediment yield predicted with the GPCC precipitation data was in good agreement with the computed one at the gauging site (only 3% overestimated) for the study period. Moreover, GPCC overestimated the sediment yield during some years despite the underestimation of flows from the catchment. The relationship of sediment yields predicted at the sub-basin level using the gauge and GPCC precipitation datasets revealed a good correlation (R2 = 0.65) and helped identify locations for precipitation gauging sites in the catchment area. The results at the sub-basin level showed that the sub-basin located downstream of the dam site contributes three (3) times more sediment yield (i.e., 4.1%) at the barrage than its corresponding area. The findings of the study show the potential usefulness of the GPCC precipitation data for the computation of sediment yield and its spatial distribution over data-scarce catchments. The computations of sediment yield at a spatial scale provide valuable information for deciding watershed management strategies at the sub-basin level.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO