Your search found 6 records
1 McIntyre, N. R.; Wagener, T.; Wheater, H. S.; Chapra, S. C. 2003. Risk-based modeling of surface water quality: A case study of the Charles River, Massachusetts. Journal of Hydrology, 274:225-247.
Surface water ; Water quality ; Risks ; Rivers ; Sensitivity analysis ; Models ; Case studies ; Nitrogen / USA / Charles River / Massachusetts
(Location: IWMI-HQ Call no: P 6143 Record No: H031206)
https://vlibrary.iwmi.org/pdf/H_31206.pdf

2 Yilmaz, K. K.; Yucel, I.; Gupta, H.V.; Wagener, T.; Yang, D.; Savenjie, H.; Neale, C.; Kunstmann, H.; Pomeroy, J. (Eds.) 2009. New approaches to hydrological prediction in data-sparse regions: proceedings of symposium HS.2 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH), Hyderabad, India, 6-12 September 2009. Wallingford, UK: International Association of Hydrological Sciences (IAHS). 342p. (IAHS Publication 333)
Hydrological factors ; Simulation models ; River basins ; Calibration ; Remote sensing ; Hydrometeorology ; Climate change ; Forecasting ; Rainfall-runoff relationships ; Flooding ; Drought ; Water balance ; Precipitation ; Case studies ; Evapotranspiration ; Satellite surveys ; Satellite imagery ; Catchment areas ; Groundwater ; Data ; Monitoring ; Macropores ; Vegetation ; Downstream ; Watersheds ; Analytical methods / Iran / West Africa / South Africa / China / India / Peru / USA / Brazil / Botswana / Karkheh River Basin / River Bani / Yellow River / Hanjiang Basin / Sahel / Kaidu River Basin / Laohahe River Basin / Peruvian Amazon-Andes Basin / Arizona / San Francisco River Basin / Brahmaputra River Basin / Limpopo River Basin
(Location: IWMI HQ Call no: 551.48 G000 YIL Record No: H044653)
http://vlibrary.iwmi.org/pdf/H044653_TOC.pdf
(0.44 MB)

3 Bloschl, G.; Sivapalan, M.; Wagener, T.; Viglione, A.; Savenije, H. (Eds.) 2013. Runoff prediction in ungauged basins: synthesis across processes, places and scales. New York, NY, USA: Cambridge University Press. 462p.
River basins ; Runoff ; Data ; Frameworks ; Hydrology ; Forecasting ; Assessment ; Catchment areas ; Water storage ; Water levels ; Water balance ; Flow discharge ; Water power ; Precipitation ; Evaporation ; Soil moisture ; Remote sensing ; Land cover ; Land use ; Geology ; Environmental flows ; Rain ; Floods ; Reservoirs ; Case studies ; Models / South East Asia / India / China / Russia / Canada / South Africa / Lesotho / USA / Italy / Austria / Chile / France / Zambia / Ghana / Zimbabwe / Australia / Sweden / Krishna Basin / Huangshui River Basin / Siberian Catchment / Andean Catchment / Luangwa Basin / Mekong River Basin
(Location: IWMI HQ Call no: 551.488 G000 BLO Record No: H046226)
http://vlibrary.iwmi.org/pdf/H046226_TOC.pdf
(0.54 MB)

4 Wagener, T.; Franks, S.; Gupta, H. V.; Bogh, E.; Bastidas, L.; Nobre, C.; de Oliverira Galvao, C. (Eds.) 2005. Regional hydrological impacts of climatic change: impact assessment and decision making. Proceedings of the International Symposium on Regional Hydrological Impacts of Climate Variability and Change with an Emphasis on Less Developed Countries (S6) held during the 7th Scientific Assembly of the International Association of Hydrological Sciences (IAHS), Foz do Iguaco, Brazil, 3-9 April 2005. Part 1. Wallingford, UK: International Association of Hydrological Sciences (IAHS). 356p. (IAHS Publication 295)
Climate change ; Hydrological factors ; Impact assessment ; Decision making ; Agricultural development ; River basins ; Water resources ; Water management ; Coastal area ; Stream flow ; Catchment areas ; Semiarid climate ; Lakes ; Population growth ; Air pollution ; Land cover change ; Hydroelectric schemes ; Flooding ; Evapotranspiration ; Watersheds ; GIS ; Arid zones ; Semiarid zones ; Sea water ; Water temperature ; Alluvial aquifers ; Models ; Satellite observation ; Forecasting ; Afforestation ; El Nino-Southern Oscillation ; Case studies / South America / North America / Europe / Africa / Asia / Brazil / Argentina / USA / Greece / Balkan Peninsula / West Africa / Benin / Cameroon / Lebanon / Nepal / Pakistan / India / China / Western Australia / Northeast Brazil / Trinidad / Vietnam / Eastern Australia / La Plata Basin / Taquari River Basin / Patagonia / Aliakmon River Basin / Black Sea / Volta Basin / Logone-Chari Plain / Himalayan Basin / Upper Indus Basin / Ganga Basin / Damodar River Basin / Yellow River Basin / Susannah Brook / Nordeste / St. Joseph Watershed / Himalayas / Red River Basin / Indian Ocean
(Location: IWMI HQ Call no: 577.22 G000 WAG Record No: H046622)
http://vlibrary.iwmi.org/pdf/H046622_TOC.pdf
(0.44 MB)

5 West, C.; Reinecke, R.; Rosolem, R.; MacDonald, A. M.; Cuthbert, M. O.; Wagener, T.. 2023. Ground truthing global-scale model estimates of groundwater recharge across Africa. Science of the Total Environment, 858(Part 3):159765. [doi: https://doi.org/10.1016/j.scitotenv.2022.159765]
Groundwater recharge ; Uncertainty ; Models ; Landscape ; Precipitation ; Hydrological modelling ; Land cover ; Vegetation ; Soil properties / Africa
(Location: IWMI HQ Call no: e-copy only Record No: H051607)
https://www.sciencedirect.com/science/article/pii/S0048969722068656/pdfft?md5=3e88e25f89f569b49c0e993956e8d5a4&pid=1-s2.0-S0048969722068656-main.pdf
https://vlibrary.iwmi.org/pdf/H051607.pdf
(2.89 MB) (2.89 MB)
Groundwater is an essential resource for natural and human systems throughout the world and the rates at which aquifers are recharged constrain sustainable levels of consumption. However, recharge estimates from global-scale models regularly disagree with each other and are rarely compared to ground-based estimates. We compare long-term mean annual recharge and recharge ratio (annual recharge/annual precipitation) estimates from eight global models with over 100 ground-based estimates in Africa. We find model estimates of annual recharge and recharge ratio disagree significantly across most of Africa. Furthermore, similarity to ground-based estimates between models also varies considerably and inconsistently throughout the different landscapes of Africa. Models typically showed both positive and negative biases in most landscapes, which made it challenging to pinpoint how recharge prediction by global-scale models can be improved. However, global-scale models which reflected stronger climatic controls on their recharge estimates compared more favourably to ground-based estimates. Given this significant uncertainty in recharge estimates from current global-scale models, we stress that groundwater recharge prediction across Africa, for both research investigations and operational management, should not rely upon estimates from a single model but instead consider the distribution of estimates from different models. Our work will be of particular interest to decision makers and researchers who consider using such recharge outputs to make groundwater governance decisions or investigate groundwater security especially under the potential impact of climate change.

6 Arheimer, B.; Cudennec, C.; Castellarin, A.; Grimaldi, S.; Heal, K. V.; Lupton, C.; Sarkar, A.; Tian, F.; Onema, J.-M. K.; Archfield, S.; Blöschl, G.; Chaffe, P. L. B.; Croke, B. F. W.; Dembélé, Moctar; Leong, C.; Mijic, A.; Mosquera, G. M.; Nlend, B.; Olusola, A. O.; Polo, M. J.; Sandells, M.; Sheffield, J.; van Hateren, T. C.; Shafiei, M.; Adla, S.; Agarwal, A.; Aguilar, C.; Andersson, J. C. M.; Andraos, C.; Andreu, A.; Avanzi, F.; Bart, R. R.; Bartosova, A.; Batelaan, O.; Bennett, J. C.; Bertola, M.; Bezak, N.; Boekee, J.; Bogaard, T.; Booij, M. J.; Brigode, P.; Buytaert, W.; Bziava, K.; Castelli, G.; Castro, C. V.; Ceperley, N. C.; Chidepudi, S. K. R.; Chiew, F. H. S.; Chun, K. P.; Dagnew, A. G.; Dekongmen, B. W.; del Jesus, M.; Dezetter, A.; do Nascimento Batista, J. A.; Doble, R. C.; Dogulu, N.; Eekhout, J. P. C.; Elçi, A.; Elenius, M.; Finger, D. C.; Fiori, A.; Fischer, S.; Förster, K.; Ganora, D.; Ellouze, E. G.; Ghoreishi, M.; Harvey, N.; Hrachowitz, M.; Jampani, Mahesh; Jaramillo, F.; Jongen, H. J.; Kareem, K. Y.; Khan, U. T.; Khatami, S.; Kingston, D. G.; Koren, G.; Krause, S.; Kreibich, H.; Lerat, J.; Liu, J.; de Brito, M. M.; Mahé, G.; Makurira, H.; Mazzoglio, P.; Merheb, M.; Mishra, A.; Mohammad, H.; Montanari, A.; Mujere, N.; Nabavi, E.; Nkwasa, A.; Alegria, M. E. O.; Orieschnig, C.; Ovcharuk, V.; Palmate, S. S.; Pande, S.; Pandey, S.; Papacharalampous, G.; Pechlivanidis, I.; Penny, G.; Pimentel, R.; Post, D. A.; Prieto, C.; Razavi, S.; Salazar-Galán, S.; Namboothiri, A. S.; Santos, P. P.; Savenije, H.; Shanono, N. J.; Sharma, A.; Sivapalan, M.; Smagulov, Z.; Szolgay, J.; Teng, J.; Teuling, A. J.; Teutschbein, C.; Tyralis, H.; van Griensven, A.; van Schalkwyk, A. J.; van Tiel, M.; Viglione, A.; Volpi, E.; Wagener, T.; Wang-Erlandsson, L.; Wens, M.; Xia, J. 2024. The IAHS science for solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING). Hydrological Sciences Journal, 50p. (Online first) [doi: https://doi.org/10.1080/02626667.2024.2355202]
Hydrology ; Water scarcity ; Transdisciplinary research ; Local knowledge ; Water security ; Prediction ; Anthropocene ; Stakeholders ; Sustainable Development Goals
(Location: IWMI HQ Call no: e-copy only Record No: H052865)
https://www.tandfonline.com/doi/epdf/10.1080/02626667.2024.2355202?needAccess=true
https://vlibrary.iwmi.org/pdf/H052865.pdf
(4.65 MB) (4.65 MB)
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO