Your search found 2 records
1 Immerzeel, W. W.; Pellicciotti, F.; Bierkens, M. F. P. 2013. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, 6:742-745. [doi: https://doi.org/10.1038/NGEO1896]
River basins ; Flow discharge ; Runoff ; Glaciers ; Watersheds ; Climate change ; Precipitation ; Temperature ; Snow cover / Asia / Himalayan Watersheds
(Location: IWMI HQ Call no: e-copy only Record No: H046051)
https://vlibrary.iwmi.org/pdf/H046051.pdf
(1.86 MB)
Greater Himalayan glaciers are retreating and losing mass at rates comparable to glaciers in other regions of the world 1–5. Assessments of future changes and their associated hydrological impacts are scarce, oversimplify glacier dynamics or include a limited number of climate models6–9. Here, we use results from the latest ensemble of climate models in combination with a high-resolution glacio-hydrological model to assess the hydrological impact of climate change on two climatically contrasting watersheds in the Greater Himalaya, the Baltoro and Langtang watersheds that drain into the Indus and Ganges rivers, respectively. We show that the largest uncertainty in future runoff is a result of variations in projected precipitation between climate models. In both watersheds, strong, but highly variable, increases in future runoff are projected and, despite the different characteristics of the watersheds, their responses are surprisingly similar. In both cases, glaciers will recede but net glacier melt runoff is on a rising limb at least until 2050. In combination with a positive change in precipitation, water availability during this century is not likely to decline.We conclude that river basins that depend on monsoon rains and glacier melt will continue to sustain the increasing water demands expected in these areas.

2 Orr, A.; Ahmad, B.; Alam, U.; Appadurai, A. N.; Bharucha, Z. P.; Biemans, H.; Bolch, T.; Chaulagain, N. P.; Dhaubanjar, S.; Dimri, A. P.; Dixon, H.; Fowler, H. J.; Gioli, G.; Halvorson, S. J.; Hussain, A.; Jeelani, G.; Kamal, S.; Khalid, I. S.; Liu, S.; Lutz, A.; Mehra, M. K.; Miles, E.; Momblanch, A.; Muccione, V.; Mukherji, Aditi; Mustafa, D.; Najmuddin, O.; Nasimi, M. N.; Nusser, M.; Pandey, V. P.; Parveen, S.; Pellicciotti, F.; Pollino, C.; Potter, E.; Qazizada, M. R.; Ray, S.; Romshoo, S.; Sarkar, S. K.; Sawas, A.; Sen, S.; Shah, A.; Ali Shah, M. Azeem; Shea, J. M.; Sheikh, A. T.; Shrestha, A. B.; Tayal, S.; Tigala, S.; Virk, Z. T.; Wester, P.; Wescoat, J. L. Jr. 2022. Knowledge priorities on climate change and water in the Upper Indus Basin: a horizon scanning exercise to identify the top 100 research questions in social and natural sciences. Earth's Future, 10(4):e2021EF002619. [doi: https://doi.org/10.1029/2021EF002619]
Climate change adaptation ; Water resources ; Water management ; Water availability ; River basins ; Governance ; Policies ; Sustainability ; Livelihoods ; Vulnerability ; Poverty ; Socioeconomic aspects ; Gender ; Agriculture ; Natural disasters ; Hydroclimatology ; Ecosystems ; Glaciers ; Mountains / Pakistan / India / China / Afghanistan / Hindu-Kush Karakoram Himalaya Region / Upper Indus Basin
(Location: IWMI HQ Call no: e-copy only Record No: H051443)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021EF002619
https://vlibrary.iwmi.org/pdf/H051443.pdf
(2.20 MB) (2.20 MB)
River systems originating from the Upper Indus Basin (UIB) are dominated by runoff from snow and glacier melt and summer monsoonal rainfall. These water resources are highly stressed as huge populations of people living in this region depend on them, including for agriculture, domestic use, and energy production. Projections suggest that the UIB region will be affected by considerable (yet poorly quantified) changes to the seasonality and composition of runoff in the future, which are likely to have considerable impacts on these supplies. Given how directly and indirectly communities and ecosystems are dependent on these resources and the growing pressure on them due to ever-increasing demands, the impacts of climate change pose considerable adaptation challenges. The strong linkages between hydroclimate, cryosphere, water resources, and human activities within the UIB suggest that a multi- and inter-disciplinary research approach integrating the social and natural/environmental sciences is critical for successful adaptation to ongoing and future hydrological and climate change. Here we use a horizon scanning technique to identify the Top 100 questions related to the most pressing knowledge gaps and research priorities in social and natural sciences on climate change and water in the UIB. These questions are on the margins of current thinking and investigation and are clustered into 14 themes, covering three overarching topics of “governance, policy, and sustainable solutions”, “socioeconomic processes and livelihoods”, and “integrated Earth System processes”. Raising awareness of these cutting-edge knowledge gaps and opportunities will hopefully encourage researchers, funding bodies, practitioners, and policy makers to address them.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO