Your search found 5 records
1 Wescoat, J. L. Jr; White, G. F. 2003. Water for life : water management and environmental policy. New York, NY, USA: Cambridge University Press. 322p.
Water management ; Participatory management ; Water resources development ; Water supply ; Domestic water ; Water use ; Water quality ; Water harvesting ; Ecosystems ; Environmental effects ; Social aspects ; Aquifers ; Groundwater management ; Water springs ; Wells ; Hydrology ; Precipitation ; Evapotranspiration ; Stream flow ; Flow discharge ; Watershed management ; Wetlands ; Lakes ; River basin development ; Reservoirs ; Dams ; Floodplains ; Soil moisture ; Land use ; Land cover ; Case studies ; Decision making ; Economic evaluation / USA / Russia / Japan / Switzerland / Malawi / Tanzania / Central Asia / Pakistan / Australia / East Africa
(Location: IWMI HQ Call no: 333.91 G000 WES Record No: H044923)
http://vlibrary.iwmi.org/pdf/H044923_TOC.pdf
(0.25 MB)

2 Siddiqi, A.; Wescoat, J. L. Jr.. 2015. Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. In Ringler, C.; Anwar, Arif (Eds.). Water for food security: challenges for Pakistan. Oxon, UK: Routledge. pp.67-82.
Irrigated farming ; Irrigation canals ; Agricultural production ; Productivity ; Energy consumption ; Groundwater ; Pumping ; Crop production ; Resource management ; River basins ; Tube wells ; Electricity ; Diesel oil / Pakistan / Punjab / Indus River Basin
(Location: IWMI HQ Call no: IWMI Record No: H046851)

3 Wescoat, J. L. Jr.; Fletcher, S.; Novellino, M. 2016. National rural drinking water monitoring: progress and challenges with India’s IMIS database. Water Policy, 18(4):1015-1032. [doi: https://doi.org/10.2166/wp.2016.158]
Drinking water ; Water quality ; Databases ; Monitoring ; Water supply ; Rural areas ; Water policy ; Households ; Regression analysis ; Models ; State intervention ; Development projects ; Planning / India / Gandhinagar
(Location: IWMI HQ Call no: e-copy only Record No: H047684)
http://wp.iwaponline.com/content/ppiwawaterpol/18/4/1015.full.pdf
https://vlibrary.iwmi.org/pdf/H047684.pdf
(0.61 MB) (616 KB)
National drinking water programs seek to address monitoring challenges that include self-reporting, data sampling, data consistency and quality, and sufficient frequency to assess the sustainability of water systems. India stands out for its comprehensive rural water database known as Integrated Management Information System (IMIS), which conducts annual monitoring of drinking water coverage, water quality, and related program components from the habitation level to the district, state, and national levels. The objective of this paper is to evaluate IMIS as a national rural water supply monitoring platform. This is important because IMIS is the official government database for rural water in India, and it is used to allocate resources and track the results of government policies. After putting India’s IMIS database in an international context, the paper describes its detailed structure and content. It then illustrates the geographic patterns of water supply and water quality that IMIS can present, as well as data analysis issues that were identified. In particular, the fifth section of the paper identifies limitations on the use of state-level data for explanatory regression analysis. These limitations lead to recommendations for improving data analysis to support national rural water monitoring and evaluation, along with strategic approaches to data quality assurance, data access, and database functionality.

4 Wescoat, J. L. Jr.; Siddiqi, A.; Muhammad, A. 2018. Socio-hydrology of channel flows in complex river basins: rivers, canals, and distributaries in Punjab, Pakistan. Water Resources Research, 54(1):464-479. [doi: https://doi.org/10.1002/2017WR021486]
River basins ; Canals ; Tributaries ; Flow discharge ; Flow measurement ; Hydrology ; Social aspects ; Water supply ; Equity ; Irrigation scheduling ; International agreements ; Treaties / Pakistan / Punjab / Indus River basin / Indo-Gangetic Plains / Jhelum River / Chenab River / Hakra Branch Canal
(Location: IWMI HQ Call no: e-copy only Record No: H048589)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2017WR021486
https://vlibrary.iwmi.org/pdf/H048589.pdf
(4.44 MB) (4.44 MB)
This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.

5 Orr, A.; Ahmad, B.; Alam, U.; Appadurai, A. N.; Bharucha, Z. P.; Biemans, H.; Bolch, T.; Chaulagain, N. P.; Dhaubanjar, S.; Dimri, A. P.; Dixon, H.; Fowler, H. J.; Gioli, G.; Halvorson, S. J.; Hussain, A.; Jeelani, G.; Kamal, S.; Khalid, I. S.; Liu, S.; Lutz, A.; Mehra, M. K.; Miles, E.; Momblanch, A.; Muccione, V.; Mukherji, Aditi; Mustafa, D.; Najmuddin, O.; Nasimi, M. N.; Nusser, M.; Pandey, V. P.; Parveen, S.; Pellicciotti, F.; Pollino, C.; Potter, E.; Qazizada, M. R.; Ray, S.; Romshoo, S.; Sarkar, S. K.; Sawas, A.; Sen, S.; Shah, A.; Ali Shah, M. Azeem; Shea, J. M.; Sheikh, A. T.; Shrestha, A. B.; Tayal, S.; Tigala, S.; Virk, Z. T.; Wester, P.; Wescoat, J. L. Jr.. 2022. Knowledge priorities on climate change and water in the Upper Indus Basin: a horizon scanning exercise to identify the top 100 research questions in social and natural sciences. Earth's Future, 10(4):e2021EF002619. [doi: https://doi.org/10.1029/2021EF002619]
Climate change adaptation ; Water resources ; Water management ; Water availability ; River basins ; Governance ; Policies ; Sustainability ; Livelihoods ; Vulnerability ; Poverty ; Socioeconomic aspects ; Gender ; Agriculture ; Natural disasters ; Hydroclimatology ; Ecosystems ; Glaciers ; Mountains / Pakistan / India / China / Afghanistan / Hindu-Kush Karakoram Himalaya Region / Upper Indus Basin
(Location: IWMI HQ Call no: e-copy only Record No: H051443)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021EF002619
https://vlibrary.iwmi.org/pdf/H051443.pdf
(2.20 MB) (2.20 MB)
River systems originating from the Upper Indus Basin (UIB) are dominated by runoff from snow and glacier melt and summer monsoonal rainfall. These water resources are highly stressed as huge populations of people living in this region depend on them, including for agriculture, domestic use, and energy production. Projections suggest that the UIB region will be affected by considerable (yet poorly quantified) changes to the seasonality and composition of runoff in the future, which are likely to have considerable impacts on these supplies. Given how directly and indirectly communities and ecosystems are dependent on these resources and the growing pressure on them due to ever-increasing demands, the impacts of climate change pose considerable adaptation challenges. The strong linkages between hydroclimate, cryosphere, water resources, and human activities within the UIB suggest that a multi- and inter-disciplinary research approach integrating the social and natural/environmental sciences is critical for successful adaptation to ongoing and future hydrological and climate change. Here we use a horizon scanning technique to identify the Top 100 questions related to the most pressing knowledge gaps and research priorities in social and natural sciences on climate change and water in the UIB. These questions are on the margins of current thinking and investigation and are clustered into 14 themes, covering three overarching topics of “governance, policy, and sustainable solutions”, “socioeconomic processes and livelihoods”, and “integrated Earth System processes”. Raising awareness of these cutting-edge knowledge gaps and opportunities will hopefully encourage researchers, funding bodies, practitioners, and policy makers to address them.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO