Your search found 5 records
1 Thenkabail, P. S.; Lyon, J. G.; Huete, A. (Eds.) 2012. Hyperspectral remote sensing of vegetation. Boca Raton, FL, USA: CRC Press. 705p.
Remote sensing ; Vegetation ; Indicators ; Multispectral imagery ; Satellite observation ; Satellite imagery ; Image analysis ; Data processing ; Data analysis ; Algorithms ; Models ; Sensors ; Water use ; Agriculture ; Crop management ; Cereal crops ; Cotton ; Botany ; Tissue analysis ; Nitrogen content ; Moisture content ; Plant diseases ; Pastures ; Indicator plants ; Species ; Canopy ; Forest management ; Tropical forests ; Wetlands ; Ecosystems ; Soil properties ; Land cover ; Reflectance
(Location: IWMI HQ Call no: 621.3678 G000 THE Record No: H044548)
http://vlibrary.iwmi.org/pdf/H044548_TOC.pdf
(0.54 MB)

2 Nhamo, Luxon; Magidi, J.; Dickens, Chris. 2017. Determining wetland spatial extent and seasonal variations of the inundated area using multispectral remote sensing. Water SA, 43(4):543-552. [doi: https://doi.org/10.4314/wsa.v43i4.02]
Wetlands ; Flooding ; Remote sensing ; GIS ; Spatial planning ; Multispectral imagery ; Satellite imagery ; Sustainable development ; Ecosystems ; Dam construction ; Catchment areas / South Africa / Mpumalanga Province / Witbank Dam
(Location: IWMI HQ Call no: e-copy only Record No: H048390)
https://www.ajol.info/index.php/wsa/article/download/162560/152061
https://vlibrary.iwmi.org/pdf/H048390.pdf
(2.58 MB)
Wetlands can only be well managed if their spatial location and extent are accurately documented, which presents a problem as wetland type and morphology are highly variable. Current efforts to delineate wetland extent are varied, resulting in a host of inconsistent and incomparable inventories. This study, done in the Witbank Dam Catchment in Mpumalanga Province of South Africa, explores a remote-sensing technique to delineate wetland extent and assesses the seasonal variations of the inundated area. The objective was to monitor the spatio-temporal changes of wetlands over time through remote sensing and GIS for effective wetland management. Multispectral satellite images, together with a digital elevation model (DEM), were used to delineate wetland extent. The seasonal variations of the inundated area were assessed through an analysis of monthly water indices derived from the normalised difference water index (NDWI). Landsat images and DEM were used to delineate wetland extent and MODIS images were used to assess seasonal variation of the inundated area. A time-series trend analysis on the delineated wetlands shows a declining tendency from 2000 to 2015, which could worsen in the coming few years if no remedial action is taken. Wetland area declined by 19% in the study area over the period under review. An analysis of NDWI indices on the wetland area showed that wetland inundated area is highly variable, exhibiting an increasing variability over time. An overlay of wetland area on cultivated land showed that 21% of the wetland area is subjected to cultivation which is a major contributing factor to wetland degradation.

3 Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. 2020. Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 242:111706. (Online first) [doi: https://doi.org/10.1016/j.rse.2020.111706]
Surface water ; Observation ; Mapping ; Remote sensing ; Urban environment ; Satellite imagery ; Multispectral imagery ; Land cover / Switzerland / Belgium / USA / Baden / Brussels / Santa Barbara
(Location: IWMI HQ Call no: e-copy only Record No: H049685)
https://vlibrary.iwmi.org/pdf/H049685.pdf
(5.25 MB)
Commonly applied water indices such as the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI) were originally conceived for medium spatial resolution remote sensing images. In recent decades, high spatial resolution imagery has shown considerable potential for deriving accurate land cover maps of urban environments. Applying traditional water indices directly on this type of data, however, leads to severe misclassifications as there are many materials in urban areas that are confused with water. Furthermore, threshold parameters must generally be fine-tuned to obtain optimal results. In this paper, we propose a new open surface water detection method for urbanized areas. We suggest using inequality constraints as well as physical magnitude constraints to identify water from urban scenes. Our experimental results on spectral libraries and real high spatial resolution remote sensing images demonstrate that by using a set of suggested fixed threshold values, the proposed method outperforms or obtains comparable results with algorithms based on traditional water indices that need to be fine-tuned to obtain optimal results. When applied to the ASTER and ECOSTRESS spectral libraries, our method identified 3677 out of 3695 non-water spectra. By contrast, NDWI and MNDWI only identified 2934 and 2918 spectra. Results on three real hyperspectral images demonstrated that the proposed method successfully identified normal water bodies, meso-eutrophic water bodies, and most of the muddy water bodies in the scenes with F-measure values of 0.91, 0.94 and 0.82 for the three scenes. For surface glint and hyper-eutrophic water, our method was not as effective as could be expected. We observed that the commonly used threshold value of 0 for NDWI and MNDWI results in greater levels of confusion, with F-measures of 0.83, 0.64 and 0.64 (NDWI) and 0.77, 0.63 and 0.59 (MNDWI). The proposed method also achieves higher precision than the untuned NDWI and MNDWI with the same recall values. Next to numerical performance, the proposed method is also physically justified, easy-to implement, and computationally efficient, which suggests that it has potential to be applied in large scale water detection problem.

4 Mwinuka, P. R.; Mbilinyi, B. P.; Mbungu, W. B.; Mourice, S. K.; Mahoo, H. F.; Schmitter, Petra. 2021. The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L). Agricultural Water Management, 245:106584. [doi: https://doi.org/10.1016/j.agwat.2020.106584]
Water stress ; Eggplants ; Canopy ; Water requirements ; Crop yield ; Forecasting ; Infrared imagery ; Multispectral imagery ; Unmanned aerial vehicles ; Remote sensing ; Irrigated farming ; Irrigation water ; Performance evaluation ; Moisture content ; Vegetation index ; Plant developmental stages ; Temperature / Africa / United Republic of Tanzania / Rudewa Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H050054)
https://www.sciencedirect.com/science/article/pii/S0378377420321314/pdfft?md5=25877087dd8e72a2377978976c8abc33&pid=1-s2.0-S0378377420321314-main.pdf
https://vlibrary.iwmi.org/pdf/H050054.pdf
(6.03 MB) (6.03 MB)
This study was conducted to evaluate the feasibility of a mobile phone-based thermal and UAV-based multispectral imaging to assess the irrigation performance of African eggplant. The study used a randomized block design (RBD) with sub-plots being irrigated at 100% (I100), 80% (I80) and 60% (I60) of the calculated crop water requirements using drip. The leaf moisture content was monitored at different soil moisture conditions at early, vegetative and full vegetative stages. The results showed that, the crop water stress index (CWSI) derived from the mobile phone-based thermal images is sensitive to leaf moisture content (LMC) in I80 and I60 at all vegetative stages. The UAV-derived Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI) correlated with LMC at the vegetative and full vegetative stages for all three irrigation treatments. In cases where eggplant is irrigated under normal conditions, the use of NDVI or OSAVI at full vegetative stages will be able to predict eggplant yields. In cases where, eggplant is grown under deficit irrigation, CWSI can be used at vegetative or full vegetative stages next to NDVI or OSAVI depending on available resources.

5 Buthelezi, S.; Mutanga, O.; Sibanda, M.; Odindi, J.; Clulow, A. D.; Chimonyo, V. G. P.; Mabhaudhi, Tafadzwanashe. 2023. Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season. Remote Sensing, 15(6):1597. (Special issue: Retrieving Leaf Area Index Using Remote Sensing) [doi: https://doi.org/10.3390/rs15061597]
Maize ; Leaf area index ; Vegetation index ; Remote sensing ; Unmanned aerial vehicles ; Multispectral imagery ; Small-scale farming ; Smallholders ; Growth stages ; Monitoring ; Forecasting ; Models ; Machine learning ; Agricultural productivity ; Crop yield / South Africa / KwaZulu-Natal / Swayimane
(Location: IWMI HQ Call no: e-copy only Record No: H051818)
https://www.mdpi.com/2072-4292/15/6/1597/pdf?version=1678869485
https://vlibrary.iwmi.org/pdf/H051818.pdf
(3.96 MB) (3.96 MB)
Maize (Zea Mays) is one of the most valuable food crops in sub-Saharan Africa and is a critical component of local, national and regional economies. Whereas over 50% of maize production in the region is produced by smallholder farmers, spatially explicit information on smallholder farm maize production, which is necessary for optimizing productivity, remains scarce due to a lack of appropriate technologies. Maize leaf area index (LAI) is closely related to and influences its canopy physiological processes, which closely relate to its productivity. Hence, understanding maize LAI is critical in assessing maize crop productivity. Unmanned Aerial Vehicle (UAV) imagery in concert with vegetation indices (VIs) obtained at high spatial resolution provides appropriate technologies for determining maize LAI at a farm scale. Five DJI Matrice 300 UAV images were acquired during the maize growing season, and 57 vegetation indices (VIs) were generated from the derived images. Maize LAI samples were collected across the growing season, a Random Forest (RF) regression ensemble based on UAV spectral data and the collected maize LAI samples was used to estimate maize LAI. The results showed that the optimal stage for estimating maize LAI using UAV-derived VIs in concert with the RF ensemble was during the vegetative stage (V8–V10) with an RMSE of 0.15 and an R2 of 0.91 (RRMSE = 8%). The findings also showed that UAV-derived traditional, red edge-based and new VIs could reliably predict maize LAI across the growing season with an R2 of 0.89–0.93, an RMSE of 0.15–0.65 m2/m2 and an RRMSE of 8.13–19.61%. The blue, red edge and NIR sections of the electromagnetic spectrum were critical in predicting maize LAI. Furthermore, combining traditional, red edge-based and new VIs was useful in attaining high LAI estimation accuracies. These results are a step towards achieving robust, efficient and spatially explicit monitoring frameworks for sub-Saharan African smallholder farm productivity.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO