Your search found 2 records
1 Pretty, J.; Sutherland, W. J.; Ashby, J.; Auburn, J.; Baulcombe, D.; Bell, M.; Bentley, J.; Bickersteth, S.; Brown, K.; Burke, J.; Campbell, H.; Chen, K.; Crowley, E.; Crute, I.; Dobbelaere, D.; Edwards-Jones, G.; Funes-Monzote, F.; Godfray, H. C. J.; Griffon, M.; Gypmantisiri, P.; Haddad, L.; Halavatau, S.; Herren, H.; Holderness, M.; Izac, A-M.; Jones, M.; Koohafkan, P.; Lal, R.; Lang, T.; McNeely, J.; Mueller, A.; Nisbett, N.; Noble, Andrew; Pingali, P.; Pinto, Y.; Rabbinge, R.; Ravindranath, N. H.; Rola, A.; Roling, N.; Sage, C.; Settle, W.; Sha, J. M.; Shiming, L.; Simons, T.; Smith, P.; Strzepeck, K.; Swaine, H.; Terry, E.; Tomich, T. P.; Toulmin, C.; Trigo, E.; Twomlow, S.; Vis, J. K.; Wilson, J.; Pilgrim, S. 2010. The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability, 8(4):219-236. [doi: https://doi.org/10.3763/ijas.2010.0534]
Farming ; Food security ; Agricultural policy ; Agricultural research ; Food consumption
(Location: IWMI HQ Call no: e-copy only Record No: H043303)
https://vlibrary.iwmi.org/pdf/H043303.pdf
(0.17 MB)
Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70–100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government’s Foresight Global Food and Farming Futures project.

2 Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B. L.; Lassaletta, L.; de Vries, W.; Vermeulen, S. J.; Herrero, M.; Carlson, K. M.; Jonell, M.; Troell, M.; DeClerck, F.; Gordon, L. J.; Zurayk, R.; Scarborough, P.; Rayner, M.; Loken, B.; Fanzo, J.; Godfray, H. C. J.; Tilman, D.; Rockstrom, J.; Willett, W. 2018. Options for keeping the food system within environmental limits. Nature, 562:519-525. [doi: https://doi.org/10.1038/s41586-018-0594-0]
Climate change ; Food systems ; Food consumption ; Environmental impact ; Ecosystems ; Land use ; Farmland ; Income ; Uncertainty ; Socioeconomic development ; Models ; Nitrogen ; Phosphorus
(Location: IWMI HQ Call no: e-copy only Record No: H049453)
https://vlibrary.iwmi.org/pdf/H049453.pdf
(8.12 MB)
The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50–90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO