Your search found 3 records
1 Dutta, S. K.. 1989. Rural social structure and its impact on rural life. Journal of Rural Development, 8(1):55-59.
Rural sociology ; Agricultural society / India
(Location: IWMI-HQ Call no: PER Record No: H05387)

2 Dutta, S. K.; Singh, D.; Sood, Aditya. 2011. Effect of soil chemical and physical properties on sorption and desorption behavior of lead in different soils of India. Soil and Sediment Contamination, 20(3):249-260. [doi: https://doi.org/10.1080/15320383.2011.560979]
Soil chemicophysical properties ; Sorption ; Desorption ; Lead ; Statistical methods ; Analytical methods ; Multiple regression analysis ; Models ; Soil sampling ; Chemical composition / India
(Location: IWMI HQ Call no: e-copy only Record No: H043832)
https://vlibrary.iwmi.org/pdf/H043832.pdf
(0.25 MB)
Lead (Pb) is a non-biodegradable contaminant, present in the environment, especially near lead-based industrial sites, agricultural lands, and roadside soils. Bioavailability of Pb in the soil is controlled by the sorption and desorption behavior of Pb, which are further controlled by the soil chemical and physical properties. In this study, sorption and desorption amounts of Pb in soil were compared with soil physical (sand, silt, clay content) and chemical (pH; electrical conductivity, EC; percent organic carbon, (%OC);cation exchange capacity, CEC) properties. Twenty-six surface soils (0–5cm), expected to vary in physical and chemical properties, were collected from different parts of India and were treated with known concentration of Pb solution (40 µg/L). The amount of Pb sorbed and desorbed were measured and correlated with soil properties using simple linear regressions. Sorption was significantly (p = 0.05) and positively correlated with pH, and %OC; desorption was significantly (p = 0.05) negatively correlated with the same two factors. Stepwise multiple regressions were performed for better correlations. Predicted sorption and desorption amounts, based on multiple regression equations, showed reasonably good fit (R2 = 0.79 and 0.83, respectively) with observed values. This regression model can be used for estimation of sorption and desorption amounts at contaminated sites.

3 Dutta, S. K.; Laing, A. M.; Kumar, S.; Gathala, M. K.; Singh, A. K.; Gaydon, D. S.; Poulton, P. 2020. Improved water management practices improve cropping system profitability and smallholder farmers’ incomes. Agricultural Water Management, 242:106411. (Online first) [doi: https://doi.org/10.1016/j.agwat.2020.106411]
Cropping systems ; Water management ; Farm income ; Profitability ; Smallholders ; Farmers ; Irrigation water ; Zero tillage ; Water use efficiency ; Crop management ; Dry season ; Maize ; Rice ; Agricultural productivity ; Production costs ; Crop yield ; Soil water content ; Simulation models / South Asia / India / Eastern Gangetic Plains / Bihar
(Location: IWMI HQ Call no: e-copy only Record No: H049964)
https://vlibrary.iwmi.org/pdf/H049964.pdf
(4.13 MB)
In the Eastern Gangetic Plain of South Asia, cropping systems under conventional crop management are frequently unprofitable due to the inefficient use of resources, particularly irrigation water and energy. Across the Eastern Gangetic Plain, farmers generally produce a wet-season rice crop followed by an irrigated dry season crop: maize has been recently introduced as the dry-season crop and is rapidly growing in popularity. Irrigation water is commonly applied using diesel-powered pumps and fluctuating fuel prices are a major factor affecting cropping system profitability. We hypothesised that the adoption of zero tillage crop establishment in a rice-maize system would reduce irrigation requirements compared to a conventionally-established rice-maize system, while maintaining comparable crop yields. Thus, higher water use efficiency and economic profitability would be achieved under the improved crop management compared to conventional practice. Field experiments over two years in Sabour, Bihar, demonstrated that early sowing of maize resulted in 8% higher maize grain yields, while zero tillage establishment produced 7% higher maize grain yields than conventionally established maize. Using the APSIM cropping systems model we tested our hypothesis over 49 years, from 1969 to 2018. Over the longer-term, zero-till maize grain yields were 9% higher than those of conventionally established crops. Under these improved management practices fuel savings of 8–15 % and labor savings of 34–43 % were achieved compared to conventionally managed crops, leading to higher water use efficiency in all treatments under improved management. Overall, gross margins in rice-maize systems under improved management practices were 20–39 % higher than rice-maize systems under conventional management. In rice-maize cropping systems in the Eastern Gangetic Plain, improved crop management practices can improve the efficiency of water use and thus increase farming households’ profitability and incomes.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO